Category: 技术

  • 特斯拉彻底放弃毫米波雷达技术

    特斯拉彻底放弃毫米波雷达技术

    正当大多数车企还在纠结于应该在自己的产品上搭载多少颗激光雷达,多少颗毫米波雷达时,小雷通过特斯拉官网获悉,从2022年2月中旬开始,特斯拉投放在北美市场的Model S和Model X将不再配备毫米波雷达。 事实上早在2021年5月份,特斯拉发布FSD Beta v9时,就取消了在美国和加拿大市场销售的Model 3和Model Y两款入门车型上所搭载的毫米波雷达,用上了一套仅由8个120万像素摄像头组成的“Tesla Visiom”视觉系统。 如今随着北美市场的Model S和Model X也不再搭载毫米波雷达,这也就意味着从此刻开始,特斯拉在北美市场上已经实现了纯视觉自动驾驶的这一愿景,正式进入了它想要的纯视觉智能驾驶时代。 坚持纯视觉的特斯拉硬刚整个行业 自动驾驶技术发展至今,该领域目前已经演变成了融合感知派和视觉感知派这两条截然不同的技术路线。 除了特斯拉之外,绝大多数车企都属于融合感知派,它们往往会采用激光雷达+毫米波雷达+摄像头等多重冗余感知方案。对于融合感知派成员来说,激光雷达、毫米波雷达已经不再是装不装的问题,而是需要装多少个的问题。 其中,小鹏汽车给旗下售价为20.53万元的小鹏P5 550P车型安装了2颗激光雷达,即将上市的上汽智己L7搭载了3颗激光雷达,本田Legend作为日本首款具备L3级自动驾驶能力的车型,更是搭载了5颗激光雷达。 相比起需要兼顾量产成本,并且并不盲目追求高阶自动驾驶能力的车企,一门心思死磕无人驾驶的RoboTaxi公司则在激光雷达的堆砌上表现得更加淋漓尽致。 其中,以不惜血本堆料著称的AutoX直接在它的第五代无人车上搭载了6颗激光雷达。更有甚者,美国的RoboTaxi公司Zoox更是丧心病狂地在它的自动驾驶测试车上堆了8颗激光雷达。 对于车企、RoboTaxi自动驾驶出行公司疯狂堆砌激光雷达的行为,特斯拉CEO埃隆·马斯克对此是表示嗤之以鼻的。要知道,马斯克一直以来都是坚决反对通过激光雷达来实现自动驾驶,甚至多次在公开场合贬低激光雷达。 马斯克认为,激光雷达昂贵、丑陋,且没有必要,它就像是人身上长了一堆阑尾,阑尾本身的存在就基本是无意义的,如果还长一堆就太可笑了。激光雷达也是如此,它对于自动驾驶汽车来说没有必要。在特斯拉CEO埃隆·马斯克看来,只有纯视觉方案才能实现真正意义上的自动驾驶。 从融合感知技术流派和纯视觉感知技术流派这两大自动驾驶技术阵营的阵容来看,目前绝大多数车企和RoboTaxi自动驾驶出行公司都采用的是前者,而纯视觉感知则由于过于极端,基本只有特斯拉还在坚持使用这一技术方案。 那么问题来了,为什么马斯克会如此嫌弃激光雷达和毫米波雷达,坚定地选择纯视觉感知这一自动驾驶技术方案呢?想要解答这个问题,我们还需要从根植在马斯克思维中心的第一性原理开始说起。 第一性原理存在bug,纯视觉做不到无人驾驶 马斯克曾经说过,第一性原理的思想方式就是摒弃比较的思维,用物理学的角度看待世界,也就是说一层层拨开事物表现,看透本质,再从本质一层层往上走。对于马斯克的这套理论,小雷打心底里表示认同。 要知道,Space X旗下的猎鹰火箭之所以能够以极低的成本飞出大气层,飞向太空,与马斯克的第一性原理有着至关重要的关系。特斯拉之所以能够将纯视觉算法做到如今这种出类拔萃的地步,也和马斯克的第一性原理脱不开关系。 在马斯克看来,自动驾驶是人工智能时代下的产物,而纯视觉感知这一技术路线则无限趋近于人,他希望让每一辆特斯拉都能够成为一个高度的智慧生物,因此特斯拉所有的技术出发点都是以人类的思维来展开。 我们人类是没有类似于雷达的器官的,但是我们只靠眼睛依然能够识别道路上的交通情况,这也是马斯克认为依靠纯视觉方案就能够实现自动驾驶的基础。在马斯克看来,摄像头就像是汽车的眼睛,而神经网络引擎就是脑子,方向盘、油门、刹车就是汽车的手和脚。 从马斯克的逻辑思维来看,这样通过第一性原理完成的设定并没有任何问题。然而,在小雷看来,纯视觉方案的问题恰好是出在了人身上。 特斯拉能够进行360°无死角监控的8颗摄像头+发达的神经网络引擎或许完美模拟人类在驾驶时的所有场景,甚至比带着情绪开车的人类驾驶员更加安全,但是纯视觉方案和人类一样存在一个足以致命的弊端——能见度极低的雨雾天气。 既然马斯克是基于第一性原理来逐步完善它的纯视觉自动驾驶技术方案,那么小雷也以彼之道,还施彼身,以第一性原理来分析分析纯视觉自动驾驶技术方案的弊端。 我们在雨雾天气高频出现的道路边通常会看到这样一块警示牌,上面写着“雨雾天气,减速慢行”。之所以会在这样的地方出现这样的警示牌,主要是因为人们在驾驶的风险系数在能见度较低的雨雾天气成几何倍数增加。 人的肉眼无法穿透雨雾,对远处的路况进行侦测,马斯克用于模拟人眼的纯视觉自动驾驶技术方案自然也无法做到。人类在遇到这种情况时往往会保持高度警惕,在能见度极低的情况下完全可以靠边停车,而纯视觉自动驾驶则要么只能顶着巨大的风险继续前行,要么直接失效,被驾驶员所接管。 说到这里,问题就来了,按照马斯克的野心,他对特斯拉纯视觉自动驾驶技术的野心绝不会止步于动辄就让驾驶员接管的L2级别,而是想着探索L3、L4甚至L5无人驾驶领域。然而,遇到能见度低的雨雾天气就直接失效的纯视觉方案又如何能够继续向上发展呢? 从自动驾驶发展的技术路线上来看,小雷是坚定不移的雷达感知流派拥护者。小雷认为,想要实现L4级别自动驾驶,那么激光雷达必不可少。 众所周知,激光雷达精度高,探测距离远,可以增强感知系统的冗余性,补充毫米波雷达、摄像头缺失的场景。另外,随着半固态、固态激光雷达逐渐替代了机械式激光雷达,激光雷达的体积也正在不断缩小,成本已经从原本动辄上万美元降低到了1000美元。 特斯拉纯视觉方案是为了降本? 如上文所言,特斯拉之所以看不上激光雷达,是因为马斯克觉得激光雷达丑陋且昂贵,且没用。然而,马斯克口中价格昂贵、颜值丑陋的激光雷达在近几年有了巨大的变化,并且“激光雷达无用论”也已经站不住脚。那么,为什么特斯拉依然坚持采用纯视觉感知这一自动驾驶技术路线呢? 在小雷看来,特斯拉采用纯视觉感知的主要原因就是一个字——抠。在小雷看来,“抠门”真的就是马斯克旗下公司的企业文化,以最低的成本获得最高的效益就是马斯克一直都在做的事情。 众所周知,搞航天是个高精尖的事情,“烧钱”也是出了名的厉害,美国NASA每发射一次两级火箭都需要花费1.3亿美金。然而,马斯克的Space X凭一己之力就将火箭发射成本降低了超过60%。 由此可见,马斯克对成本控制的苛刻程度令人瞠目结舌。值得一提的是,同样的情况也出现在了马斯克旗下的另一家公司特斯拉身上。前段时间,特斯拉官方发布了一则名为《特斯拉成本控制的“极佳”定律》的视频,该视频内容围绕特斯拉如何降本增效展开,同时也揭秘了它在生产制造工艺方面的创新。 特斯拉认为,汽车成本的本质在于工厂,而特斯拉最重要的产品之一就是它的超级工厂,每一家工厂的生产效率直接决定了整车的制造成本。例如,特斯拉的大型压铸机独创性地将70余个零部件精简成了1个,这类创新性技术将会不断摊薄特斯拉工厂的制造成本。 除了创新的制造工艺以外,本土化生产也是特斯拉最重要的降本手段之一。到目前为止,特斯拉上海超级工厂的零部件本土化率已经超过了90%,而这也是此前Model 3、Model Y能够大幅降价的底气所在。 在动力电池方面,成本同样是特斯拉引以为傲的4680电池的杀手锏。据了解,这款电池相比起过去能量密度可以提升5倍,续航能力提高了16%,输出功率提高了6倍,但成本却下降了14%。 同样的道理在特斯拉的自动驾驶技术路线上也一样适用。尽管目前的激光雷达价格已经大幅降低,但是在“抠门”的马斯克眼中,上千美金的激光雷达同样也是要钱的。 要知道,目前搭载激光雷达的车型销量并不高,而特斯拉已经有了相当夸张的销量基础。如果每台车都搭载激光雷达,这对特斯拉来说同样是一笔不小的成本。 当然,特斯拉量产车从头到尾都不曾搭载过激光雷达,即便是这次,它取消的也只是毫米波雷达。毫米波雷达的价格并不像激光雷达那么昂贵,那么特斯拉为什么也要取消呢? 总结 马斯克否定的并不只是激光雷达,而是包括毫米波雷达在内的所有雷达式感知设备。小雷认为,他之所以要取消毫米波雷达,其一是为了进一步降低成本,其二则是为了斩断自己的后路,坚定自己发展纯视觉自动驾驶的决心。斩断自己的后路,就意味着特斯拉除了发展纯视觉感知自动驾驶技术之外就已经无路可退了吗? 小雷认为也不尽然,因为小雷发现了一个有意思的情况:尽管特斯拉表现上在死磕纯视觉技术路线,但实际上它却已经与激光雷达供应商Luminar建立了合作关系,并且搭载激光雷达的特斯拉Model Y早已经开始上路测试。 […] read more

  • 满电续航1100公里!“哪吒S”才是真正的“里程焦虑终结者”啊!

    满电续航1100公里!“哪吒S”才是真正的“里程焦虑终结者”啊!

    随着新能源汽车领域的竞争不断加剧,哪吒汽车作为新能源领域的造车新势力已经扛住了一波又一波淘汰赛,成为了留在场上的优胜者。然而哪吒汽车依旧在不断改善着自己的产品,其车型也越来越全面、越来越成熟。 近日,哪吒汽车官方正式宣布哪吒S历时3个月的冬季标定测试即将收官,这也意味着哪吒S正有条不紊地跨越实现量产的关键节点。 说到冬季,或许很多新能源车主,尤其是北方的用户,可以说都是有苦衷的,这个苦衷便是“续航”。而对于哪吒S而言,在极寒天气和复杂冰雪路况下,凭借着其搭载的新一代自主开发的HozonEPT4.0恒温热管理系统,实测续航里程提升20%。更是在-20℃开启空调后10分钟便能达到舒适温度,表现出了过硬的品质。 那么,“HozonEPT4.0恒温热管理系统”究竟是啥? 国内首个整车系统级智能热管理策略 对于其他的新能源车型,基本上是采用的传统的割裂式热管理策略,即空调、电池、座舱等热管理“各自为政”,加热管道复杂,也很容易造成热能浪费,协同效率也较为低下。 和传统的割裂式热管理策略不同的是,哪吒S所搭载的HozonEPT4.0恒温热管理系统是基于高集成水源式热泵的一体化热管理系统,其可将独立的各系统集成起来,从而做到尽可能小的热量浪费,极大程度地降低热管理系统对电池电量的消耗,从而可以更好地保障续航。 同时,此种一体化的设计可将所有部件的物理部分和控制部分集中,实现管路数量降低超过40%,可靠性将随之提高50%。并且哪吒汽车将哪吒S的热泵最低工作温度降低到了-18℃,在满足舒适度的情况下,新车的冬季续航里程也提升了20%左右。 此外,该系统还可根据环境温度与电池温度自动规划热泵系统的加热程度,启用不同的加热模式。换言之,小到流量控制阀、水泵,大到空调压缩机,前端冷却模块上的散热风扇,都能实现精细化控制,保障电池、空调、电驱工作在适宜的温度。值得一提的是,HozonEPT4.0恒温热管理系统还会对整个循环产生的余热进行回收,实现能源利用最大化,使得新车热管理效率COP高达2.0,处于行业顶尖水平。 在哪吒S历时三个月冬季标定测试中,新车在极寒条件下圆满地完成了动力输出、极寒状态下的续航能力、电动使用效率和寿命等等测试。另外哪吒S还进行了冬季极寒环境下暖气、空调的工作效率。测试时,哪吒S智能双区空调可以基于环境温度、电驱温度、电池电芯温度等状态,根据空调主/副驾目标温度和环境温度的温差,自动计算风向调节方式,能够让哪吒S在-20℃、40km/h行车过程中,10分钟车内即可达舒适温度。 作为基于全新自研平台架构——“山海平台”打造的首款车型,哪吒S未来将提供增程、纯电动两种版本车型。并且,凭借着HozonEPT4.0恒温热管理系统的加持,新车增程版续航里程达到1100公里,纯电版续航里程达到800公里。 哪吒自主研发的HozonEPT4.0恒温热管理系统,势必将进一步强化哪吒汽车在技术方面、尤其是智能化技术方面的实力,将进一步满足日益变化的用户需求,可以说哪吒汽车时刻都保持对时代潮流的洞察和前瞻布局。 出处:头条号 @麻辣车事官号 read more

  • 体积比盐粒儿还小的电池问世了

    2022年2月22日讯,德国开姆尼茨工业大学及中国长春应用化学研究所科学家在《先进能源材料》杂志上撰文称,他们研制出了迄今世界上最小的电池,可为一粒灰尘大小的计算机供电,未来有望在物联网、微型医疗植入物、微型机器人系统和超柔性电子等领域大显身手。 电子产品一直在朝小型化迈进,小型微电子设备(如植入人体内的传感器系统)需要比一粒灰尘还小的计算机和电池。但迄今为止,缺乏可随时随地运行的电源,以及很难生产可集成的微电池这两大因素阻碍了这一趋势。 科学家们称,通过开发合适的电池或“采集”发电方法,可以为微小的亚毫米级计算机供电。但目前微型电池的生产方法与普通电池大相径庭,如拥有高能量密度的紧凑型电池(纽扣电池等)使用湿化学方法制造而成,使用这种标准技术生产的微电池可以提供良好的能量和功率密度,但其直径明显超过1平方毫米。 研究团队的目标是设计一种直径小于1平方毫米、可集成在芯片上的电池,其最小能量密度仍为100微瓦时/平方厘米。为实现这一目标,该团队在微型规模上集成了集电器和电极条——特斯拉也在大规模使用类似工艺制造其电动汽车用电池。 研究人员使用到了所谓的“瑞士卷”或“微型折纸”工艺。他们在晶圆表面连续涂覆聚合物、金属和介电材料薄层,形成具有内在张力的分层系统。薄层被剥离会释放出机械张力,随后自动弹回去卷成“瑞士卷”。因此,不需要外力就能制造出一个自卷绕圆筒式微型电池。 利用这种方法,团队制造出可以反复充电的迄今最小的微电池,其比一粒盐还小,能为世界上最小的计算机芯片供电约10个小时。而且,该方法与现有芯片制造技术兼容,能够在晶圆表面生产高通量微型电池。 研究人员称,这款微型电池有望在物联网、微型医疗植入物等领域大显身手,应用于未来的微纳电子传感器和执行器内。他们表示,这项技术仍有巨大的优化潜力,未来可能会出现更强大的微电池。 撰文:科技日报 @刘霞 read more

  • 美国Amprius公司的“世界最高密度”电池开始出货了

    美国Amprius公司的“世界最高密度”电池开始出货了

    美国 Amprius 于2022年2月16日宣布,出货第一批商业化的 450Wh/kg(1150Wh / L)锂离子电池单元,它们将被用于新一代的高空伪卫星(HAPS),这是目前可用电池中能量密度最高的锂电池。 据该公司称,这些是目前“世界最高密度”的商业化电池单元,“在先进的航空航天应用中部署颠覆性的电池单元,肯定了 Amprius 是现有最高能量密度电池的领先供应商”。 实现这一结果的一个关键是 Amprius 的硅阳极(Si-Nanowire 平台),该公司曾在 2021 年 11 月 8 日宣布了 405Wh/kg的电池,仅几个月能量密度就达到了 450Wh/kg。去年 12 月,该公司称其 370Wh/kg的版本可以在大约 6 分钟内从 0 充电到 80%。 安普瑞斯科技公司的首席运营官 Jon Bornstein 说,“与之前在 2021 年 11 月 8 日宣布的 405Wh/kg产品相比,这一进步凸显了我们在提供具有无与伦比的性能的产品方面的路线图的加速。我们专有的 Si-NanowireTM 平台和我们开发的综合解决方案实现了无与伦比的性能,并继续保持我们的产品领先地位。” 目前,Amprius 在其位于加利福尼亚州弗里蒙特的工厂中以有限的规模生产电池单元。本季度晚些时候,该公司打算为其在美国的第一个大批量的生产设施选择地点。 该公司没有透露制造能力如何,也没有透露高能量密度的电池单元是否会进入电动汽车。 特斯拉的埃隆-马斯克曾在 2020 年称,400Wh/kg能量密度的电池单元只需 3-4 年就能实现,也就是 2023-2024 年,这将大大减轻电池的重量。 根据 Enpower 的数据,目前特斯拉的 […] read more

  • 下一代特斯拉的FSD更好?

    下一代特斯拉的FSD更好?

    如果你对即将在明年登场的特斯拉新一代 FSD 有所了解,又如何看待如今老一代的 FSD 呢? 先说结论,两代 FSD 间的差异巨大,特别是基础硬件——既无法通过简单的物理升级完成,更不用说 OTA 了。 目前这一代特斯拉 FSD(HW3.0),图像传感器为安森美的 AR0136AT,这是 2015 年的产品,像素仅有 123 万像素。 新一代 FSD(HW4.0),不出意外的话,首先会搭载在不断推迟量产的 Cybertruck 上,其中最大的变动之一就是图像传感器由安森美的 AR0136AT 变为索尼的 IMX490,像素增加到 543 万。 IMX490 像素为水平 2896*垂直 1876,1/1.55 即 10.36 毫米,ADC 10 比特帧率为 40 帧,ADC 12 比特帧率为 30 帧,灵敏度为 2280mV,动态范围为 120 分贝,可扩展为 140 分贝。 AR0136AT 为 1280*960 像素,1/3 光学尺寸,IMX490 是其两倍大,也就是摄影界常说的「底大一级压死人」。这里的「底」指的是传感器的光学尺寸。 光学尺寸大,好处有两点: 首先,成像更好。因为更大的传感器能接收到更多的光。光越多,成像也越好。信噪比越高。 其次,更大的传感器更容易获得广角。所谓长焦易得,广角难求。即便是 2022 […] read more

  • Model S Plaid 的电池里有秘密

    Model S Plaid 的电池里有秘密

    在海外的电动车 KOL 圈子中,Model S Plaid 已经成了身份的象征。 这仿佛就像拥有一部当季最新的 iPhone 旗舰之于科技 KOL 的关系:如果连一款最能代表当下行业技术特点的车都没有的话,你怎么好意思说自己懂这个行业? 而相对于传统燃油车的「旗舰」来说的话,Model S Plaid 与对应参数表现的产品来说,又太「便宜」了,这也是几乎做到人手一车的又一关键因素。 在一样的价格里,Plaid 是最快的。 在一样快的产品里,Plaid 是最便宜的。 能做到这一点固然有电动化的优势,但最难的还是特斯拉的努力。 最近,Sandy Munro 老爷子拆解 Model S Plaid 的工作进入到了电池阶段,我们终于有机会,来看看特斯拉在这一「技术大爆炸」产品中都做了什么。 都不用拆开,我们就能看到 Plaid 电池的第一个变化,在电池包的最上面,增加了一组云母保护罩,这个罩体重 15kg,在之前的特斯拉车型上都没有出现过。据猜测,加入这一部件的目的,是为了符合中国日益严格的电动汽车防火要求。 在拆开电池包的时候,能看到特斯拉在壳体上的制造技术。Munro 强调特斯拉使用了通用汽车拥有专利的同轴焊接工艺,而额外增加的钢板,都增加了电池包外壳的刚性。 还值得注意的一点是,在内部包括电芯和电路在内的全部组件和外壳之间,特斯拉预留了从 2.5 厘米到 3 厘米不等的空隙,这可以保证在严重碰撞的时候给金属外壳留下足够的形变空间,而不至于挤压到电池本体。 抛开外壳,最重要的一点其实也是行业中最近火热的生产工艺话题:压铸。 整个电池包的内部结构,是靠铸件来完成结构支撑和分块区隔。 铸件的第一个好处,是强度更大,因此在实现同样结构所需的情况下,也会更薄,因此会把更多的空间留给电芯。 第二个好处,则是成本更低,除了铸件本体制造的成本更低外,这套铸件还一次性「承接」了更多以往需要更多其它部件才能完成的功能。 比如,铸件的两个外侧起到了支撑管线的左右,一侧固定住了内部的线缆,一侧固定住了热管理的通路,而这些都不需要在为它们设计制造额外的部件。 在 Plaid 上,特斯拉继续推动了元器件的高集成化,比如在之前的 Model S 上,包括车载充电器,DC-DC 转换器等分列电池包的两端,而 Plaid 只需一侧就放下了全部部件。 这样,就有更多空间留给电芯。 在电池包体积相似的情况下,特斯拉曾经的 85kWh […] read more

  • 太阳能充电车真的问世了,售价108万!

    太阳能充电车真的问世了,售价108万!

    既然太阳能可以转化电能,为什么不给电动车的车顶上装上太阳能板呢?! 相信很多人都问过这个问题,但目前太阳能转化效率还不够高,仅车顶上这一小块面积不够满足汽车行驶的续航距离,再有就是,长期遇上阴天该怎么办? 但是,最近一家来自荷兰的初创公司LightYear推出的太阳能汽车LightYear One(光年一号)却让我们看到了希望~ LightYear One在最新的测试中,打破了电动汽车单次充电行驶距离的纪录,充电一次,就以85公里/小时速度连续行驶了将近9个小时,完成了惊人的725公里! 而能做到如此,可不是因为它的电池容量足够大。事实上,LightYear One的电池容量只有60kWh,相同电池容量下的特斯拉Model S 大概能跑个300多公里… LightYear One能如此持久,是因为它有另一颗能够提供源源动力的“肾”——太阳能电池板 从汽车的引擎盖、车顶到尾翼处覆盖有其获得专利的近千个手机大小的长方形黑色双曲面太阳能电池板,总面积达到了5平方米。 且每块电池板都采用独立设计,不仅仅是为了可以适应车顶的弯曲弧度,也考虑到了即便部分电池板被遮挡,也不会影响剩余电池板正常光伏发电。 要知道,这个提升和进步可不是突然就从天上掉下来的,原来这个初创公司的主力都是荷兰工程学院的学生,他们在2013、2015、2017三年都获得了世界太阳能汽车大赛的冠军。可以说如今的巨大进步是他们连续多年摸索每一个细节不断提升续航里程所取得的累积成就! 如今的LightYear One正是若干年来技术累积的成果,马上就要把它从赛车引入到民用的量产车了! 如今的这个太阳能充电系统可以平均每小时为LightYear One提供12公里的续航电量,每天在日间充最少70公里的电量… 考虑到天气等种种外在因素,它每年就可以光靠太阳能充电行驶7000公里以上… 当然,毕竟还有时不时的阴天,太阳能毕竟不可能稳定地带来电源。因此LightYear One依然配备了电源充电系统,60kWh的电池组足可以达到普通纯电动汽车的续航了。 而除了能自动充电,LightYear One还非常节能省电!通过最新的技术将LightYear One车体外观进一步优化。 整个设计有点类似于北欧的极简风格,没有过多的线条去修饰,从车顶到尾翼处的溜背设计,更拉长了整个车身修长的身形。 因此LightYear One的风阻系数很低,还不到0.20Cd,每公里电池耗电量也仅为83Wh,比当前市面上绝大多数电动车都要少2-3倍,是迄今为止空气动力学性能最佳的五座电动车。 而且,LightYear One的每个轮子内都有一个独立控制的电机驱动,再加上高效率的传动系统,这意味着着整车拥有不错操控性能的同时,车子的重量大幅度的降低。 虽然达不到特斯拉电动车百公里加速3.3秒的程度,但依然拥有不输普通燃油车款的加速表现,百公里加速不到10秒… 也就是说,你可以把它当作一台电动+太阳能的混合动力汽车,它能够在极大程度上帮你缓解当下电动车在续航上的焦虑,让你的爱车变得更“持久”~ 或许你可能觉得然并卵…打着太阳能的噱头,其实还是玩电动!? 但仔细想一想,如果一辆电动汽车可以用相同的电池容量跑更长的里程,那么它就是高效的啊!而LightYear One近乎是特斯拉的2倍! 当然,这只是开始,按照LightYear首席执行官Lex Hoefsloot的话说:“我们建立这个公司的目的,就是希望将来能打造一台不再依赖充电站的汽车,完全依靠太阳能自行供电,可以实现一光年太阳里程(相当于 5.88 万亿英里)的小目标,这也是我们公司名称的由来。” 虽然目标任重道远,但至少值得期待~目前,LightYear One已经在其官网上开启预定,首批共发售946辆,约15万欧元一台(约108万软妹币)…预计今年夏天交付。 出处:头条号 @新设技抖创意 read more

  • 全球首款“能量密度最高”的电池发布了

    全球首款“能量密度最高”的电池发布了

    据称,美国加利福尼亚的Ampirus公司已经发运了第一批据称是目前市场上能量密度最高的锂电池。按重量计算,这些硅阳极电池的能量比特斯拉的Model 3电池高出73%,而体积却减少了37%。 上图:Amprius已经向其第一个客户交付了约450wh /kg的电池,这是目前可用的密度最高的电池。 根据Enpower提供的数据,特斯拉目前的Model 3电池可作为最先进的对比,容量约为260 Wh/kg和730 Wh/l。而新的Ampirus电池在能量比和能量密度上都是一个重大的进步,电池容量为450 Wh/kg和1150 Wh/l,该公司表示,刚刚交付给“新一代高空伪卫星的行业领袖”的电池数量未披露,这使其拥有“当今电池行业可用的最高能量密度电池”的吹嘘权利。 Ampirus表示,这种电池令人印象深刻的性能,是源于其硅纳米线阳极技术。当你给锂离子电池充电时,你可以有效地从每个锂原子的阴极上拉出一个电子,并通过外部线路将它们移动到阳极上,因为电子不能通过阳极和阴极之间的电解液或隔膜。它们的负电荷拉着带正电荷的锂离子穿过电解质和隔膜,在那里它们各自找到一个电子,并嵌入到阳极的典型石墨晶格中。 上图:硅纳米线电极比典型的石墨晶格电极可以储存更多的锂,Amprius公司表示,硅纳米线电极的使用寿命足以与当前的技术相媲美。 而现在,Ampirus公司用硅纳米线取代了石墨晶格。硅可以储存比石墨多10倍的锂,但它容易膨胀和破裂,大大降低电池寿命。Ampirus说,当你将硅形成多孔纳米线,排列成一片由较长的导线和较短的导线组成的森林时,硅能够耐膨胀和抗开裂,从而延长了电池的寿命,使硅阳极成为一项具有竞争力的技术。 该公司表示,硅纳米线正好根植于阳极的衬底中,因此电导率(和功率)很高。它说电池的循环寿命是“优秀的”和“不断提高的”,尽管它并没有给出任何数字,它还说,阳极是电池唯一变化的部分,其余的可以使用现有的制造方法和部件生产。 显然,世界已经准备好并等待下一代电池,它可以在更小的尺寸和重量中储存更多的能量 —— 从智能手机到电动汽车,一切都将受益于重量或空间的减少,电动垂直起降飞机等新兴技术也迫切需要电池来提高飞行距离和飞行能力。 上图:在重量和体积上,Amprius电池的能量密度明显优于目前的锂电池。 当然,能量密度和能量比只是电池需要竞争的两个指标。热性能、安全性、充放电率和循环寿命都将发挥重要作用,价格也将发挥重要作用。事实上,Ampirus的第一个客户是在先进的航空航天和卫星制造领域,这表明,在这一点上,这些电池在价格竞争上并不占优。 该公司将很快选择一个地点,并在该地点开始建造大规模生产设施,这将带来规模经济,可能使这项技术在电动汽车市场和其他地方具有相关性。 到该工厂启动并运行时,我们还应该能够为另一家先进电极制造商提供一些确切的性能指标:Nawa Technologies 表示,它已经开发出一种廉价制造垂直排列碳纳米管电极的方法,声称这些方法可以使当今的锂电池提高 300%。 我们等着瞧吧。 出处:头条号 @知新了了 read more

  • 丰田汽车终于有纯电动版本了

    丰田汽车终于有纯电动版本了

    古人云:丰田原生出电动,家祭无忘告乃翁。 多少年来,一直因为没有电动车而被全世界冷嘲热讽了10086遍的丰田,终于在去年末拿出了首个纯电平台的电动车bZ4X。区别于之前的C-HR EV等“通用平台”车型,丰田在bZ4X上启用了全新、原生的bZ纯电平台。 这样一辆千呼万唤可算出来的丰田电车,最新消息是国产上市就在今年。2021年11月才揭幕量产版,2022年内跑完下线到国内发布再到上市的全套流程。这不是哪里冒出来的鸡血新造车,这可是稳字贴在脑门上的日系老顽固。 去年bZ4X发布时,所有目光都被聚焦在了全球首发的纯线控转向技术,以及与特斯拉形似而神不似的One Motion Grip方向盘。敝号也曾用整个篇幅(见《这一回,丰田赢了特斯拉》),尽可能解释了科幻方向盘造型底层的技术背景。故此,不再提方向盘相关。 一向以稳重见长的全球第一大车企,为何毫无征兆地,率先应用未经时间验证的前沿技术? 当bZ4X顶着一具单侧150°打满、整圈无需换手、如飞机操作舵一般的方向盘登场,人们似乎暂时忘却了它“丰田首款纯电平台”的重要身份。朋友们,你或力挺、或嘲讽、或为其不平、或等其倒闭,无数次热搜头条重复着“丰田没有电动车”,到底不就是为了这一天,咋就被一个方向盘勾了魂呢。 纯电不纯电,共线不共线 按照2022年内国产上市来算,丰田最终原生平台电动车的开售时间,只会比整体更激进、进度更靠前的德国对手晚一年多点。这个时间差,要明显小于此前丰田纯电进度给人的感觉和猜测。 大众ID.系列是在2021年初开始上市交付的,但往前推,为了生产ID.系列在内的全新MEB纯电平台(还包括奥迪等品牌),大众早在2018年就动工了佛山和安亭两座新工厂,还有第三座安徽MEB工厂正在建设中。接近三年过后,国产ID.系列才开始交付。 丰田这边,其实从2020年初就开始在中新天津生态城,建设一汽丰田的新能源工厂。预计的投产时间自然对应着bZ4X的国产上市时间,即2022年内。整个节奏周期和大众MEB计划相当,里外里都是三年左右出活儿。 安亭MEB工厂 本胡曾解释过,今天“油改电”和“原生平台”之间,已经不再像过去那样泾渭分明、优劣尽显。简言之,“纯电平台”与否,对于普通消费者而言,其实全凭车企一张嘴。人家愿意叫啥就叫啥了,话术稍微动点心思又不犯法——谁会大大方方跟你讲自己“不是专为纯电”呢? 换个思路想,手工耿们在自家后院,照着某燃油车的样子Ctrl+C、Ctrl+V出一副车架,然后只塞电池不装内燃机,他说这是自己的“纯电平台”有问题吗?没有,这对人家来讲就是纯电平台,人家确实从没拿它造过哪怕一辆油车呀——某些“新造车”听到不要打喷嚏。 所以说“油改电”还是“原生纯电”,名字是任人打扮的小姑娘,无论车企叫法还是媒体说法都不绝对可靠,可靠的只有你自己的判断。二者之间的根本差异,并不是“是否用它造过油车”,而是“是否为了电动车所需的最优解,扔掉了燃油平台的‘好处’”。 奔驰EVA平台,纯电平台在物理结构上是完全不同的 燃油底子的好处是什么?是大比例的零部件可以通用,是修改设计和调校时有章可循,最重要的是可以利用现成的生产线或只做部分调整,出活儿快,省时省力省钱。别忘了“平台”诞生时的最重要作用之一,就是实现同平台不同车型的共线生产。 而原生纯电平台所要代表的,是以电池为首的电力阶级的最广大利益,是续航、是电耗、是充电便利、是电池绝对安全……今天这个平台,要思考电动车的基本诉求是什么,想“电”之所想、急“池”之所急,结果自然是物理存在层面与燃油平台分道扬镳。你是方的,我是圆的,对不起咱没法处。 所以全新的纯电平台,总是和一座新工厂或者至少一条新生产线绑在一起。你时常会在新闻中看到,某某品牌为生产电动车投入多少多少资金建设新工厂。同一条流水线上,也许可以前后脚走下A4和Q5,却无法同时生产Q5和Q5 e-tron。越是激进转型纯电的车企,越是会把电动车工厂这个“坑”挖得更深。 处不到一块,还是离了吧 那么纯电平台不一样的“物理存在”,究竟是怎么不一样的呢? 狭义来讲,平台一定是以白车身/车架作为载体的。平台概念诞生之初,其范畴主要就是一部分车身,以及其上各个子系统(动力、传动、悬架等)的通用化模块化,后来到今天,才陆续加入了电子电气架构、智能运算平台等在其中。但归根结底,核心仍旧是具备快速延展适应力的(部分)白车身。 从燃油车到纯电动车,车架变化的本质是什么呢?是从“车头塞一坨铁疙瘩如何保护乘员”到“车底有一块大宝贝伤不得碰不得”,毕竟,现在要是电池有个三长两短,乘员一样是安危难保。 动力的变化使得整车主要组成变了,整车结构的变化带来了不同的结构需求。在燃油时代,为了适应严苛的碰撞安全标准,燃油平台需要且可以在车身底板(平台车型通用设计),部署多道横纵向的梁式结构。以前向碰撞为例,能量经由机舱前纵梁传递至防火墙附近,然后主要经车底纵梁向后传导。 下:斯巴鲁燃油平台的吸能路径 到了纯电时代,车底被电池包塞得满满当当,如此路径显然是行不通了。你不会放心由电池包传递能量,一根主梁将电池包隔成好几块也不现实。不改动这些主要结构,则电池包只能“外挂”在车底下方,或减少离地间隙,或大幅抬高底板,更不要说冗余结构增重,这些是老生常谈的了。 有些通用平台也会对这些主结构做一些改动,但无不是带着代价的。丰田过往的所谓“e-TNGA平台”(并不是一个严格定义),电池包前端有明显的两侧斜切,这减少了电池包的可用体积,自然也就减少了续航里程(的上限)。 其原因便是新的底板纵梁结构要绕开电池包,但又必须和前方宽度较小的前机舱纵梁相接,于是电池包前端就不得不收缩,让出两部分纵梁斜向连接的空间。宽度相对较小的前机舱纵梁,对于燃油车是合理的,但电动车就需要更加特化的结构布置。 对于电动车,更理想的前向能量传递路径,从前机舱纵梁-车底板纵梁,变成了前机舱纵梁-侧门槛纵梁。一方面这要求前机舱纵梁尽可能向两侧拓宽,减小它们与侧门槛梁的横向“落差”(但这不是可无限增加的),另一方面需要二者相连接之处,即防火墙到前门柱区域,做更多利于能量传导的结构优化。 因为能量传导路径的中央部分空缺了,对于前方碰撞能量的吸收传导,如今更加依赖侧门槛梁。你会发现绝大多数纯电平台的电动车,都拥有非常粗壮的车门门槛。下面这张大众MQB(燃油)到e-Golf(MQB油改电)再到MEB(纯电)的进化图,就很容易说明问题: 图源见水印 终于说回丰田,bZ平台属于原生的纯电平台,并不是因为丰田自己说它是纯电平台,而是因为我们能看到它摒弃了燃油结构、有为纯电“考虑”。在bZ4X的车身结构图中,燃油车必备的中央隆起/排气通道已经消失无踪;车底纵梁也不复存在,前向能量传导更加依赖侧门槛纵梁。 不过,不同于相对稍显激进的大众,丰田bZ平台身上有更加稳重保守的色彩。 MEB是将绝大部分能量传导都寄托于门槛梁,而丰田bZ平台稍微降低了门槛梁承受的压力。前机舱纵梁直接连接着两个“斜坡”(下图黑色),将部分能量分散给车身底板,底板正中央的隆起应该也能发挥部分作用,剩下的能量会被导向侧门槛梁然后向后车身传导。 这可能是因为,bZ平台的前机舱纵梁并未像前面所说的向两侧拓展,而保持了较常规的宽度。前纵梁与门槛梁的横向“落差”也就相对较大,像MEB那样将几乎全部前向能量导至门槛梁,效果可能不够理想,或者会带来更多结构增重。 至于这么做的原因,可能是考虑到前纵梁更宽意味着前轮摆动区域更小,即附带着前轮转向角度缩小的代价。对于高端车型,这可以用后轮转向(RWS)予以弥补,但丰田bZ平台并不是一个豪车平台,眼下它需要更多为无RWS的车型考虑。 bZ4X 丰田的这种思路倒不是独一份,现代E-GMP平台上也有异曲同工的结构。韩国人的办法是在车身底板前部中央设置了一小段纵梁,前纵梁传来的能量会经车底中央,导向后方车底中段的横梁,也是一定程度上帮助侧门槛分摊了压力。 现代E-GMP,注意底板前部的红色结构 眼下谈论这两种思路是否有优劣之分,还为时尚早(车还没卖出去多少呢)。前向碰撞能量传导路径的不同,也只是原生纯电平台区别于通用平台的特征之一。拿来说明问题,也只是因为这一点较为显见。 核心差别其实很简单:从燃油车到电动车,“心脏”从车头一大坨铁,变成了车底越大越好的一片“不能碰”区域。靠锂电池能量驱动的汽车,(要想获得最佳的表现)就需要最适合“携带”锂电池的结构,燃油车上恰到好处的那一套结构,用在电动车上越来越成为掣肘和阻碍。 于是它们发现,自己与燃油平台的那些老骨架,已经处不到一块去了。 撰文:嗷嗷胡 出处:头条号 @autocarweekly read more

  • 将二氧化碳转换成汽油的技术获得重大突破,效率提高千倍!

    将二氧化碳转换成汽油的技术获得重大突破,效率提高千倍!

    地球面对的气候问题,每个人应该都知道是非常严峻的,并且长期以来,人类对气候的改变并没有停止,并且对污染物的排放情况来看,还在加剧。当然,大气变暖物排放越多,那么地球的变暖程度肯定会加强。 这不,从2021年的二氧化碳排放数据我们都可以看到,人类对温室气体的排放丝毫没有改变,同时加上气候连锁效应,地球本身释放出一些温室气体,更加地让地球变暖了。 根据统计数据显示,在2021年,大气中平均二氧化碳(CO2)浓度达到了百万分之414,甲烷浓度也达到创纪录水平,其中气候连锁效应带来的“大火”——排放的二氧化碳物质,都高达18.5亿吨,这比2020年又提升了不少,2020年这一数值为17.5亿吨。所以,地球的变暖仍在发生,地球面对的气候问题已经是“双重”效应了。 而在这种情况之下,可能大家第一个想法就是,减少温室气体来改变气候。但是在科学界,科学家们也在想办法进行对二氧化碳的“合理”利用,希望将二氧化碳物质进行全面的转换,这不,关于“新催化剂将二氧化碳转化汽油效率”的消息再次引发了大家的热议。 因为这是二氧化碳变汽油的重大突破,如果能够实现大规模地​转换,这必然是一个好事情。无论是在经济效应上,还是在缓解全球变暖的效率上,都可能具有突出的贡献。 那这次到底是不是真的呢?很多人可能会质疑,二氧化碳真的能转化为汽油吗?的确是可以的,在化学领域早就有这些研究,例如:将废弃的二氧化碳、大量的氢气转化为乙烷、丙烷、丁烷链,变成人类可以使用的燃料。但是转化的效率不强,达不到一定的规模化,所以很多人可能都不了解。 这不,《美国国家科学院院刊》就发表了新的说明,研究者们发明了一种新的催化剂,可以提升二氧化碳的转化汽油效率。是什么物质,是如何做到的?真能让地球变暖暂停了? 这种新的催化剂是一种由于元素钌组成的物质,一种属于铂族的稀有过渡金属。当然,这里我们可以了解下钌的情况。 钌其实在我们地球上也不是很多,在地壳中含量仅为十亿分之一,是最稀有的金属之一,但是这种物质具有先天性的稳定性,并且耐腐蚀性很强,所以在化学上的运用还是比较广泛。 该物质熔点为2310℃,在做催化剂的时候,就算是具有极强的放热性,依然可以表现非常稳定,而且在各种酸包括王水在内均有抗御力,对氢氟酸和磷酸也有抗御力。在高频感应加热炉氩气保护熔炼、生产厚膜电阻浆料等都有它的运用。 而在2016年的时候,诺贝尔化学奖获得者乔治·欧拉团队首次公布,采用基于金属钌的催化剂,将从空气中捕获的二氧化碳直接转化为甲醇燃料,转化率高达79%。这也算是推动了二氧化碳转变的重大一幕。 而这次,相当于是对元素钌的演变催化剂的一种新方式,这种催化剂在改变的过程之中,涂有一层薄薄的塑料,它也能够做到像任何催化剂一样,实现高效​地​转化,这一新催化剂,加速了化学反应过程,并且,还不会在过程中耗尽,这也说明了具有重复利用的情况。 同时,它还具有比其他高质量催化剂(如钯和铂)便宜的优势,所以成为了科学家们的一个研究方向。 并且,在相同的条件之下,新催化剂产生的丁烷,是标准催化剂——在最大压力下可产生的最长碳氢化合物的1000倍。看到没?效率提升了1000倍,这是新催化剂能从反应中生产汽油的能力的一项突破。该团队在实验的过程之中,只需要做到一点,那就是——只需要更大的压力来生产所有用于汽油的长链碳氢化合物就行。 当然,为了更大效率地执行这一过程,团队也在设想了一个“碳中和循环”,其中,二氧化被收集、转化为燃料再次燃烧,由此产生的二氧化碳重新开始循环。 所以,相当于是“多次循环系统”,很不错。当然,一旦这种研究进行了大规模的推广,未来我们将可能实现“全球变暖”的缓解,让地球的变暖暂停,这完全是一件有利于全球的事情。 ​不过,这里​也有一个问题,我们上面其实也提到了,这种催化剂的载体的元素钌,是最稀有的金属之一,如果要在全球实施大规模地运用,来改变我们的气候,这个可能性暂时还是比较低的,除非有能力进行该元素的大规模生成,这样还能够实现。 所以,我们单从催化剂的方面来讲,还是更加期期待一种更强的技术吧。这种催化剂虽然效率提升不少,但是所需要的催化剂元素,可以说还是比较难的。 出处:头条号 @环球科学猫 read more

  • 特斯拉电动超跑的首席工程师跳槽到福特了

    特斯拉电动超跑的首席工程师跳槽到福特了

    据 electrek 于2022年2月11日报道,特斯拉电动超跑首席工程师 Alan Clarke 跳槽到了福特。 Alan Clarke 在特斯拉工作了十多年,他于 2009 年开始担任高级设计工程师,参与了多个项目,包括 Model S 的标志性门把手。 领英页面显示,Alan Clarke 曾参与: Model X – 先进工程、前驱动单元和后传动系统的集成、高压配电的集成、所有封闭面板的制造 Model S 电池外壳的机械设计 —— 铝结构和钢盖的设计和开发,包括铸件、挤压件和冲压件,以及多种连接和密封技术 包括用于 Model S 的 Catia 运动学建模在内的前后悬架和转向系统的先进设计 Model S 整车套件所有者 – 推动解决集成问题 Model S 外门把手概念机制和首个原型设计以证明生产概念 四年前,Alan Clarke 升任了项目工程总监,领导了超跑汽车 Roadster 项目、Model 3 和 Model Y 的车辆架构,以及 Cybertruck 电动皮卡原型的工程。 据了解,Alan Clarke 本周宣布已接受福特高级电动汽车开发小组的职位。他将加入 Doug Field […] read more

  • 有这个配件儿,特斯拉汽车的续航力提高100公里?

    有这个配件儿,特斯拉汽车的续航力提高100公里?

    据外媒报道,一家名为EV Solar Kits的初创公司,正在为特斯拉汽车开发光伏升级包。据称该升级包的成本约为5000美元,加装之后每天大约可让汽车多跑100公里。 这家公司的创始人曾是凯迪拉克的工程师,他说这些套件可以安装在特斯拉Model 3和Model Y汽车的车顶上,而且不会违反特斯拉的保修政策。根据其描述,该公司已在德克萨斯州进行了beta测试。 同时,该公司还在研究一种可伸缩的折叠太阳能面板,在不用的时候可以集成在后备箱中,可以更加灵活地安装在任何电动汽车上。 根据此公司的创始人介绍,这个项目已经吸引了上千人的兴趣,已经通过邮件与他表达的订购的意向,可能将在不久发起众筹。那么,通过太阳能电池板给电动车充电,这个想法靠谱吗? 埃隆·马斯克曾经也公开表达过对汽车太阳能电池板的兴趣。早在2016年,他就表示特斯拉”可能”为Model 3提供太阳能车顶选项,并补充说这项升级不会”超级昂贵”,甚至考虑一个”可伸缩”的太阳能系统,这听起来与EV Solar Kits的可扩展面板有相似之处。 尽管这项服务后来并未推出,但马斯克还是承诺了将在其电动皮卡Cybertruck上提供太阳能选项。 同时,今年早些时候,USPTO公开了一件特斯拉专利,展示了一种在车辆上可伸缩太阳能电池板的设计。 不过,马斯克后来可能对这个想法进行了否定,他表示除非经常驾驶,否则Cybertruck的太阳能电池板可能无法为日常使用提供足够的电力。 的确,按照目前的太阳能发电效率,很难达到预期效率。假设太阳能电池面板的发电效率为160W/m^2,我们按照车顶面积2平米计算,如果车辆每天在太阳下照射时长为4小时,在理想情况下,每天发电量也仅有1.28 kWh。不知那家EV Solar Kits采用了什么技术,但按照常规来算,对于电动车来说,加装太阳能电池板能为实际续航产生的作用的确是杯水车薪。 编译:见配图水印 read more


吉ICP备2020006555号

diandong123.cn

⌜ 免 责 声 明 ⌝
本站仅为纯分享中国人民在节能减排、人类实现碳中和地球环保等方面所作出的杰出贡献。
网页内容(如有图片或视频亦包括在内)由网友上传分享,站内短期缓存均为免费/无偿,无商业目的。
遇有侵害您合法权益之处欲申诉删改,可联络站务电邮处理(删/改)!