Tag: 宁德时代

全球多个国家押注镁电池技术研发
如今各种锂电池已经成为日常生活里必不可少的设备,无论是手机、电脑、可穿戴设备还是新能源汽车,它的应用变得越来越广泛。但随之而来的是外界对锂电池资源的担忧,尤其是今年以来锂电池相关原材料价格出现飞涨,逼迫各国纷纷加快布局“后锂电池”时代。 锂电池资料图。图源:视觉中国 多国押注镁电池 《日本经济新闻》网站20日以《锂电池何时被超越?》为题报道称,英国剑桥大学、丹麦及以色列的知名工科大学以及德国、西班牙的研究机构组成的联合研究团队“E-Magic”在欧盟的资金支持下,正以2030年为目标,加快开发突破性的高容量、环保性更好的镁电池和锌电池。 报道称,锂电池最早在20世纪90年代开始由日本索尼公司实现商用化,它比之前的镍氢电池、铅酸电池能存储更多电能,如今已经在新能源汽车、个人电脑、智能手机等产品上得到普及,相关研究还在2019年获得诺贝尔化学奖。但锂电池的最大缺点就是成本高。报道举例称,如果将锂电池作为大规模储存太阳能或风能等可再生能源的储能电池,日本经济产业省的资料显示,想将其成本降到跟水力发电相当的每千瓦时2.3万日元的水平“是白日做梦”。 因此“后锂电池”时代的主要目标是压缩成本和提高耐用性。“E-Magic”瞄准了成本更低的镁电池。镁离子可以携带2个正电荷,而锂离子只能携带1个,因此理论上镁电池的能量密度可以比锂电池更大。目前实验室的镁电池已经能反复充放电超过500次。研究人员将致力于改进电解液及开发新的电极材料。同时丰田的北美研究所和美国休斯敦大学也在开发新型镁电池,它的电极正极材料采用有机化合物,电解质采用硼。虽然这种镁电池目前只能充放电200次,但研究团队称“已经找到了开发出高稳定性、高性能电池的方向”。 除了镁电池外,报道提到日本东北大学的小林弘明助教和本间格教授也在开发新型锌电池,他们用水溶液取代有机溶剂作为电解液,降低了火灾事故的风险,由于其成本低,未来有望用于储蓄可再生能源电力。 替代技术尚不成熟 真锂研究首席分析师墨柯21日接受《环球时报》记者采访时表示,就当前正在发展的锂电池替代技术而言,除了日本媒体提到的镁电池、锌电池,还有相对更成熟的钠电池。事实上,钠离子电池和锂离子电池均起源于上世纪70年代,它们的工作原理也高度相似。只是受制于没有合适的电极材料,钠电池一直到2000年之后才取得突破。当前技术最先进的钠电池是中国宁德时代今年7月发布的,具备全球最高的能量密度(160Wh/kg)和超快充特性(15分钟可充电80%)。预计宁德时代下一代钠电池能量密度可突破200Wh/kg;计划于2023年形成基本产业链。 墨柯认为,从目前的发展情况来看,无论是镁电池、锌电池还是钠电池,其成熟度距离大规模商业化应用还有相当差距,甚至只是处于实验室阶段,性能也有不少缺陷。他表示,外界对于这些锂电池替代技术如此热心,核心原因不在于它们的性能更好,而是资源更丰富、原材料价格更便宜。 正如《日本经济新闻》提到的,锂电池原材料——锂、镍、钴的产地分布极度不均。相关资料显示,近80%锂资源产量主要集中在美洲四湖以及澳洲六矿,中国需要的锂资源80%以上都要靠进口;镍资源多数集中在印尼、澳大利亚、巴西、俄罗斯、古巴和菲律宾等地区,这六国的镍储量占比全球储量近78%;全球已探明钴资源由约51%分布在刚果(金)。相比之下,钠、镁、锌的储量要高得多。例如锂在地壳中的储量为0.0065%,全球储量仅有8600万吨,而钠在地壳中的储量为2.74%,仅中国柴达木盆地的钠盐储量就达到3216亿吨。 但另一方面,镁电池和锌电池在技术和材料上仍有相当多障碍有待克服,目前还没有找到比较合适的电极材料,更谈不上大规模应用。墨柯预测,考虑到一项新技术从实验室研制到量产再到大规模应用的过程,这些替代技术可能需要等待二三十年才能发展成熟。他还表示,即便是相对成熟的钠电池,由于钠离子半径和体积相对较大,因此在能量密度提升上受到限制,可能更适合储能电池、二轮电动车等对能量密度要求不高的领域。宁德时代透露,已经开发出了钠电池和锂电池共用的体系,彼此可以“取长补短”。 锂电池还可以再“挖潜” 如果锂电池在短时间内还难以被取代,那么它的未来又如何呢?墨柯认为,今年以来锂电池相关原材料价格的飞涨存在人为炒作的成分,单就锂资源的储备量而言,虽然远不如钠镁锌,但在未来三五十年内是绝对够用的。 同时锂电池的潜力还远没有被挖掘干净。墨柯表示,锂电池理论能量密度最高可达到700Wh/kg,目前高镍811电池(即电池正极材料中镍占比80%、钴占比10%、锰占比10%)的能量密度能达到260-270Wh/kg,而日韩头部电池企业在2021年都推出镍含量在90%以上超高镍电池产品,再加上负极采用硅碳材料,有望将能量密度提高到400Wh/kg,相当于锂电池的储电能力提升了50%。此外,多国还在研究将锂电池的液态电解液替换为固体电解质,可以同时提高其能量密度和安全性。 撰文:环球时报 @马俊 @晨阳 read more

本田宣布2030年停产油车,连发4款纯电新车!
被戏称为买发动机送车的本田,要在国内放弃燃油车了! 就在昨晚,本田正式发布了在华的电动化战略—推出智能电动汽车新品牌e:N,2030年起在国内销售的产品全部为纯电和混动车型,不再投放新燃油车。 e:N品牌的首两款车型——东风本田的e:NS1和广汽本田的e:NP1(姊妹车)拥有e:N品牌的全新设计风格,内部搭载了15寸的车载大屏,支持语音交互、OTA升级、AR HUD、远程控制等功能,还有本田的L2级自动驾驶系统。 这两款车属于一款前驱SUV,官方称最远续航超过500公里,实车将在分别在即将开幕的武汉车展和广州车展亮相,并最终在明年上市销售。 除了这两款首发车型,本田在现场还展出了e:N Coupe Concept、e:N SUV Concept和e:N GT Concept三款概念车,分别对应跑车、SUV和大型GT轿车的概念车,将于未来5年内逐步投产。未来5年,本田将在国内总计投放10款纯电车型。 在电动化的道路上,以丰田、本田为代表的日系车企并不如德国车企激进,其在过去10年里主要精力放在了HEV混动和FCEV氢能源汽车方面,而在主要的纯电方向则要落后一些——本田品牌在国内甚至连一款纯电车型都没有。 然而透过本次发布会来看,本田显然已经下决心大力拥抱电动化浪潮了。除了推出新品牌和纯电平台的车型,其还给出了停售燃油车的时间表。 按照本田的规划,到2030年纯电车型和氢燃料车型的销售占比要达到40%,2035年80%,2040年则要达到100%。 毫无疑问,当年那个买发动机送车的本田,正在全面拥抱电动化浪潮。 一、首款纯电续航500公里 东本广本同时产 在此次发布会上,最重磅的车型莫过于本田纯电品牌e:N的第一款车型e:NS1和e:NP1。 这两两款车属于同一车型的姊妹版本,在国内由东风本田和广汽本田分别投产,其中东风本田生产的车型名为e:NS1,广汽本田生产的车型名为e:NP1,两辆车仅在外观方面些许不同,类似于广汽本田的雅阁和东风本田INSPIRE之间的关系。 外观方面,该车是之前本田发布的SUV E: Prototype概念车的量产版本,属于中型SUV,两车的外观设计较为简洁,车身线条较为硬朗,车头采用了e:N家族的发光式车标。 广汽本田e:NP1(上)和东风本田e:NS1(下) 配置方面,这两款车均基于本田e:N专属的e:N Architecture F的纯电前驱架构打造,车辆采用高刚性专用车架、三合一高功率电机以及大容量电池。 但本田并未在此次发布会上公开车辆的三电参数,只是宣称这台高功率电机的控制程序集成了超过2万个场景算法,并且该车拥有超过500公里的续航能力(测试标准未注明)。 而车辆更多的参数信息将于上市后公开。 车辆的三大核心技术 智能座舱方面,车内搭载了一块10.25英寸的液晶仪表盘和一块15.2英寸的纵置中控显示屏,车内的大部分功能都被集成在这套显示屏里,实体按键仅保留了双闪、前后风挡加热等功能。 此外,NS1和e:NP1搭载了基于智能化技术而打造的e:N OS全栈智控生态系统,可以为驾乘人员提供更加安全和智能的服务。同时,该车还搭载了本田CONNCET 3.0纯电动车专用车机系统,拥有AI语音助理、车家互联、OTA升级等超过20项智能功能。 并且,车主还可以使用手机对车辆的车门、车窗、空调等功能进行远程控制,以及无钥匙启动。 车辆内饰设计 本次发布会上,本田方面并未透露该车的自动驾驶的硬件配置以及具体功能,只是介绍了该车具备了驾驶员状态感知系统,该系统可以有效识别驾驶员状态,以便提醒驾驶者随时准备接管车辆。 乘坐舒适性方面,e:NS1和e:NP1采用本田独家的降噪技术,可以分别根据低、中、高等不同波段的路噪为驾乘人员提供更为安静的车内氛围。 如果车主不喜欢车内过于安静的氛围,本田还为该车提供了电子声浪,当车辆开启运动模式时,踩下加速踏板便会有相应的加速音效。 东风本田的e:NS1将在一周之后的武汉车展亮相,广汽本田的e:NP1将在今年年底广州车展正式亮相,这两款车都会在明年春季上市并公布售价,车辆更具体的参数配置届时也将公布。 在车辆上市之后,东风本田和广汽本田将依托全国1200家特约店,为e:N品牌打造专属空间,并将在国内重点城市设立e:N品牌专营店。 二、三款概念新车齐发 5年内陆续量产 本次发布会上,除了发布上面这两款量产车外,本田中国还带来了三款纯电概念车以及e:N品牌专属纯电架构。 这三款概念车分别为e:N Coupe Concept、e:N SUV Concept和e:N GT Concept,定位分别为轿跑车型、SUV车型和大型GT车型。 这三款概念车的外形,咋看咋像三艘船。 e:N […] read more

在电池研发领域,通用比特斯拉更先进?
从2014年至今,在过去7年里,市场上凡是成功量产化的电动汽车,其续航里程都在不断提高:2014-2017年主流续航基本都在150公里,到了2018年主流车型续航里程就有250-350公里了,到了2019年,这个数字就变成了350-450公里,而在2021年的今天,20万以内车型都可以有600公里的续航。 这么快的续航提升速度的背后,是车企们这几年致力于提升续航的结果。而提升续航的办法,大方向上无外乎两种:A、增加电池电量;B、提高电机效率。 但是对车企们来说,现在电机95%-96%的工作效率几乎高到天花板,很难再有突破。所以当这两个方案摆在面前时,车企们往往都是选择方案A。 虽然这几年通过增加电池电量很有效,但其实传统车企没有做好准备,就像面对数码相机普及的柯达一样,传统车企们拿不出更好的办法,想要像特斯拉那样走完从平台搭建到产品设计生产的整套流程也不大可能,所以传统车企们都选择了一个耗时更短,上架更快的方法,也就是我们熟悉的“油改电”。他们直接拿来消费者耳熟能详的燃油车型的图纸,将原本动力总成的部分换成了三电系统。 而增加续航,就是在这套燃油车平台上尽可能想办法安置更多的电池。然而一台车的空间终究是有限的,为了安全考虑,留给电池的空间其实并不多。 所以从2013年到2018年,大部分传统车企的电动汽车都有“油改电”的影子,而这些“油改电”都有一个缺点,就是续航里程实在太短。从150km到300km的水平,这样的续航里程显然无法解决用户的焦虑。 为什么“油改电”的续航能力都那么弱?因为“油改电”的底盘结构是按照燃油车的特点设计的,设计的时候并没有考虑到能否装上更多电池,所以改成纯电车以后,空间也没法得到充分利用。 正是因为“油改电”的底盘设计“不科学”的原因,不少车企剑走偏锋搞起了“异形电池”,例如2019款荣威ei5,这款车的后排就要比前代车型高出不少。 后排座椅增高了,后排乘客的舒适度明显会受影响,可这也是没有办法的办法,因为荣威ei5为了装下更多电池,将续航里程从301km提升到420km,作为代价,就只能让后排乘客在舒适程度上作出了让步。 在意识到“油改电”的局限性以后,不少车企选择开发纯电平台,而这些开发纯电平台的车企中,比较早就拿出纯电平台产品的,就包括2014年进入国内的特斯拉,2017年推出小蚂蚁的奇瑞新能源以及2018年推出蔚来ES8的蔚来汽车。 说起纯电平台,我们要知道它最大的优势就是能结合动力电池的特点来设计车辆的底盘,让车内空间得到充分利用。就像专业的整理师能让你的柜子装下更多衣物一样,纯电平台能让一台车尽可能装下更多的动力电池。 如果没有推出纯电平台就去造电动汽车,车企们会有怎样的后果?极星2的故事也是一个例子。作为沃尔沃汽车CMA混动平台打造的车型,虽然最初考虑了安放电池,但作为非纯电平台的极星2即使加高了底盘,用了异形电池,搭载电池的电量依旧赶不上特斯拉Model 3。 当车企们都用起纯电平台后,车辆的续航表现想要再有提升的话,又要重新回到“做加法”的阶段,但是和之前不一样,这时候车企要做的不是增加电池数量,而是提升电池的能量密度。 说白了就是在原有的空间里,尽可能想办法通过削减其他零配件占的体积,来为电芯让出更多的空间。 这一套思路典型的产物,就是宁德时代开发的行业首创的CTP技术。CTP技术英文全称是Cell To Pack,宁德时代给它取的中文名叫做“无模组电池”。 传统的动力电池由电芯(cell)——模组(modules)——整包(Pack)来组成,CTP技术简化了电池的模组结构,把电池组成方式变成了电芯(Cell)直接集成(to)成整个电池包(Pack),将电池包体积利用率提高了15%到20%,同时让零部件数量减少了40%,生产效率提升了50%。 比亚迪呼声很高的刀片电池,其实用的就是“磷酸铁锂+CTP”的形式。 除了CTP,还有不少车企正在CTC(Cell to Chase)的方向上寻求突破,因为CTC能让厂家像小朋友组装四驱车玩具一样,将电池直接装在底盘上,连电池包(PACK)都省去了。 有意思的是:对于使用圆柱电芯的特斯拉来说,走的是另一条路线——由于圆柱体之间仍然有空隙,为了提高车辆的空间利用率,外加节省成本,就把18650电池升级成了直径更大的21700电池,并一直在进行4680电池的开发。 特斯拉能够把一个我们平常见到的18650电池在车上用到极致,这和从一开始工程师考虑了方方面面都有关系——不仅是电池结构紧凑,就连特斯拉的电机,在功率差不多的情况下,体积也小于很多竞争对手。而这都是为了让内部空间得到更充分的利用,从而能将很多部件集成起来。 因为马斯克看透了最本质的事情——提升续航里程所依靠的电池电量,必须要尽可能从有限的空间中挖掘出来。 不过CTC技术也好,4680电池也好,看上去它们已经达到了挖掘空间的极限。 但让我没想到的是,通用汽车最近发布的一个操作,把“挖掘电池空间”这件事推向了另一个极限——在通用自己新发布的Ultium平台上,为了给搭载更多电芯创造空间,从而提升能量密度,通用在电池整包层面减少了90%的低压线束。 ——通用之所以能减少90%的线束,是因为工程师们把原本低压线束承担的通讯功能,交给了无线模块去解决。说白了就是通用的BMS信号,会由无线的方式去工作。 这在降低整包重量的同时,还有助于提升续航里程,也为搭载更多电芯创造了空间,有利于提升能量密度。同时,更少的硬线连接和接插件使用也将带来更低的故障率,提升系统安全性。 在电池的空间基本已经压榨到了极限的情况下,通用的工程师却想到了还可以去掉一些线束来给电池腾出更多的空间,这个创举确实太妙了,真有点“第一原理”的味道了。 不过一提到“无线”,很多人联想到的可能是自己打王者荣耀、“吃鸡”时突然网络卡顿,从而功败垂成的不好体验,因此对于无线BMS的可靠性,多多少少有所顾虑。 这个问题通用的工程师早就考虑过。 为了解决模块之间通信稳定性的问题,工程师为Ultium 的无线BMS准备了三个机制。 首先是自适应随机跳频技术:当识别到当前通讯频段出现干扰时,无线主节点芯片会判断下一个时间窗口的通讯频段(非固定频段顺序),判断好后会通知从节点芯片,两个芯片就一起自动改变到了不受干扰的频段,从而避免了干扰。 而这个过程是可以自主学习的,即能通过算法识别出高堵塞信道,有意降低该信道占用率。 然后是自适应Mesh(网状)+Star(星状)混合网络架构的应用。 这个看起来很玄乎的东西,作用是当有的电池模组与BMS的无线通讯出现异常时,这个模组可以通过借助旁边的模组来通信,从而完成通讯功能。说白了就是每一个模组,都可以帮助其他模组参与通讯,这样单个模组失效的几率就非常小了。 最后就是时间戳及数据重传机制。 这个机制主要有两个作用,一个是无线BMS的通信时间由一个主节点统一安排,这样就避免了众多模块一起通讯造成无序混乱的问题,另一个是万一某个模块数据传输失败,主节点也会安排这个模块多次尝试传输数据,从而保证了数据的稳定性。 ——通过这三个机制,通用的工程师们最大限度避免了无线通讯网络可能会受外部频段内/外的无线噪声干扰以及内部系统中其他节点信道占用导致的通信数据丢失,让这个技术可以实际应用在了车上。 有了无线BMS以后,通用能让自家的电动汽车装下更多动力电池,并且让电池能量密度的提升有了更多可能。除此之外,更多的电池内部空间,不仅便于布置更多防热扩散的专利设计,能加入更多防撞横梁,大幅提升了三电系统的安全性。 更多防撞横梁? 说到这个,不得不提的是前面更为普遍使用的CTP技术也难免会有劣势。 CTP最明显的一个弊端就是电池包的物理防护结构,从碰撞层面来看,CTP的强度确实要比“非CTP”的弱了一些。而搭载无线BMS技术的平台,凭借更多防撞横梁的优势,理论上安全性会比CTP车型要更好。 比起传统的有线BMS,通用发布的无线BMS还有更多值得关注的优势: 比如无线BMS让电芯更方便地支持不同的化学配方、电芯封装形式、排列组合,要是以后原材料再涨价的话,厂家们也能更快地用上价格更实惠的替代品。 比如无线BMS让电芯技术实现了升级换代,以往电芯存在的那些问题都被很好地克服。 比如无线BMS让每个模组都能在尺寸上保持一致,不论替换还是升级都更加方便,厂家能像拼乐高一样,用单独的电池模组组成大小不一的电池包。 比如无线BMS的底层架构能像电脑软件一样及时更新换代,同时带来装配工艺的革新,此外还能让动力电池得到更好地回收与二次梯度利用。 靠着无线BMS,Ultium纯电平台让我们看到了通用汽车在新能源赛道上的不俗实力。靠着Ultium,如今的通用汽车在电池包这块的技术,可能已经走在了特斯拉的前面。 而能体现到Ultium平台技术的时间也越来越近:到了明年,在上汽通用旗下的凯迪拉克Lyriq车型上,我们就能体验到Ultium平台技术,而根据官方的消息,凭借着Ultium平台,未来通用旗下的车型电池容量理论上可以在50-200kWh之间调配,这就意味着只要通用想做,给一台车搭载200kwh电池,使续航突破1000km其实根本不是什么难事。 通用能做到无线BMS,而这就引发了我更大的遐想——汽车总装这道工序无法全自动化最大的原因就是柔性的线束,这些柔软的线束很难用机械臂让其固定为某一个形态以便于安装,特斯拉曾经陷入生产地狱也是因为马斯克过于激进希望能够全自动化生产。 而通用的无线BMS技术,至少从理论上已经通过解决“提出问题的人”的方式克服了线束的问题,那么如果通用能把这项无线技术延展到整个车的大部分电子电气架构并能保证稳定,那就意味着通用可能会是第一个做到整车100%自动化生产的企业。 […] read more
宁德时代发布钠离子电池
北京时间2021年7月29日下午,宁德时代举行发布会,正式发布第一代钠离子电池,其电芯单体能量密度达到160Wh/kg,在常温下充电15分钟,电量就可以达到80%,具有快充能力。 宁德时代董事长曾毓群称,钠离子电池在低温性能、快充以及环境的适应性等方面拥有独特的优势,与锂离子电池相互兼容互补。 出处:头条号 @界面新闻 read more