Tag: 锂离子电池

手机/电脑在1分钟内可充满电?电动汽车也只用10分钟就可充满?
美国科罗拉多大学化学工程师安库尔·古普塔发现了描述超级电容器中离子运动的“缺失环节”,修正了已存在近200年的基尔霍夫定律,从而让科学家们能够模拟和预测离子在多孔材料中的运动,有望开发出让手机笔记本电脑1分钟充满电,电动汽车10分钟充满电的超级电容器。 平均来说,超级电容器充放电速度可以比锂离子电池快10倍,但储存能量也只有锂离子电池的1/10,从而让电容器取代商业锂离子电池变得完全不可行。这是由1845年发现的基尔霍夫定律决定的,这个定律主要用于描述电流和电压,但它只适用于单个孔隙中的电子运动,无法准确预测离子在多孔材料中的行为。 古普塔发现,离子在孔隙交叉处的移动与基尔霍夫定律所描述的不同,它既受电场影响,也会受到扩散的影响。古普塔因而通过应用化学工程技术,开发了一种新模型,在不影响精度的情况下,将数值计算速度提高了6个数量级,可以在几分钟内模拟和预测离子在一个由数千个相互连通的孔隙组成的复杂网络中的运动。这意味着科学家们可以更有效地预测离子运动,开发出具有更高储能潜力的超级电容器。 简单来说,就是古普塔解决了基尔霍夫定律的局限,发现了离子在多孔材料中的运动方式,从而为开发能存储更多能量的超级电容器奠定了基础,科学家们有望借此开发出储能媲美锂离子电池,但充放电速度和循环寿命都远超锂离子电池的新的储能设备。 如果这一理论得到实际应用,不仅可能彻底改变手机、笔记本、电动汽车的储能方式,对正在蓬勃发展的人工智能和机器人领域也将产生重大影响,而它最重要的影响可能还在电网上,因为这种极为高效的充放电储能,可以快速响应电网的削峰填谷要求,让电网变得更加稳定。 这项研究发表在5月24日《美国国家科学院院刊》上。 标题:A network model to predict ionic transport in porous materials 链接: https://www.pnas.org/doi/10.1073/pnas.2401656121 出处:头条号 @徐德文科学频道 read more
固态钠电池研发获新突破
固态钠离子电池技术研发又有新进展。 2023年12月19日,美国的马里兰大学宣布,该校能源创新研究所教授Eric Wachsman领导的团队开发出一种性能优于当前钠离子电池的新型固态钠离子电池架构。 它使用了更稳定的陶瓷固态电解质,相较于液体电解质,这种电解质不易燃,安全性更强。其采用了钠金属作为负极,使得电池能够获得更高的能量密度。 钠离子电池与锂离子电池工作原理相似,主要依靠钠离子在正极和负极之间移动来工作。相较于锂离子电池,钠离子电池具有资源储备量丰富、成本低等优势,但在能量密度方面落后于锂离子电池。 钠离子电池与锂离子电池多采用液态电解质,容易出现漏液、燃烧等问题,而使用固态电解质取代易燃的有机液态电解液,可有效提高电池的安全性,这类电池也被称为固态电池。固态电解质的开发是此项技术的主要难点。 马里兰大学称,上述固态钠离子电池特殊的负极和电解质材料使得其负极界面的电阻有效降低至3.5 Ωcm2,有利于钠离子的快速传输。 该电池每平方厘米的表面上能够创纪录地通过40 mA的电流,满足高速充放电的需求。同时,它还能够在每平方厘米的表面上储存和释放10.8 AH的电荷,能够满足电池长时工作的需求。 为验证该新型固态钠离子电池架构的性能,马里兰大学的研究人员将软包电池外壳、磷酸钒钠正极与钠金属负极和陶瓷固态电解质组装在一起,在室温下实现了2C速率循环,这意味着电池能够在半小时内充满或放完电。 固态电池和钠离子电池都被视作下一代电池技术,两者的组合此前也已进入国内电池研发人员的视野。 2020年,中科院大连化学物理研究所公布了一款具有高能量密度、长寿命等特点的全固态钠离子电池,由二维材料与能源器件研究组研究员吴忠帅团队等人共同研制。 该款软包钠离子电池在平铺和弯折状态下循环535次后,仍可保持355 Wh/kg的能量密度。软包是电池的三种封装方式之一,其他封装方式还包括方形和圆柱。 今年9月,中国科学院物理研究所(北京凝聚态物理国家研究中心)胡勇胜团队发现了一类新型粘弹性无机玻璃固体电解质,克服了有机聚合物固态电池界面化学稳定性较差、无法与高电压正极兼容等问题,使得固态钠离子电池能够耐受高压,并保持良好的循环率。 10月,中国科学院青岛能源所发文称,崔光磊研究员带领的固态能源系统技术中心成功研制出了固态钠离子电池,其电芯能量密度超140 Wh/kg,已实现在二轮电动车的示范应用。该团队未来还将重点针对低速电动车、新能源汽车48 V电源系统、家庭储能等领域继续开展研发工作。 国内的固态钠离子电池研发成果大多公布了能量密度等关键参数,但界面新闻未能查询到马里兰大学所发布成果的同类数据,因此无法直接对比产品的性能高低。 截至目前,固态钠离子电池在产业化层面并未大范围铺开。仅有广州昊威新能源科技有限公司(下称昊威新能源)公布了这项技术的量产投资计划。 今年9月,该公司宣布将在重庆投资100亿元,建设固态方形钠离子电池生产线项目,年产能30 GWh。昊威新能源注册成立于2021年,何怀福持有该公司全部股权。 比克电池则在今年7月透露,正在探索钠离子电池性能改善的新路径,即“半固态+钠电”的组合,目前已开启中试样品阶段。半固态电池是液态电池和全固态电池的折中方案,其电解质形态介于液态和固态之间。 宁德时代(300750.SZ)、比亚迪(002594.SZ)等电池龙头并未公布在固态钠离子电池技术路线方面的研发成果。 宁德时代于2021年7月发布了第一代钠离子电池,该产品其采用了液态电解质,能量密度为160 Wh/kg,接近磷酸铁锂电池。后者是目前主流的锂电池技术。 高工产研GGII曾分析称,“现阶段,(半)固态钠离子电池仍处于开发初期,随着专利技术储备增加与突破,(半)固态钠离子电池有望在2026-2027年实现规模量产。” 编译:界面新闻 @高菁 read more

充电10分钟即可行驶400公里的新电池在两年内可量产
在锂电池加入超薄的镍箔 ” 当几乎所有的电动车都能10分钟充满75%,还会存在里程焦虑吗? 眼下就有一种新型的充电技术,可以实现10分钟超级快充。 最近,来自美国宾夕法尼亚州立大学王朝阳(Chao Yang Wang)教授联合多位研究人员,在锂离子电池快充技术上获得一项重大突破。 据他们描述,这种快速充电技术适用于大多数能量密集的电池,使电动汽车电池充电时间缩短到10分钟。即便将电动汽车电池从150千瓦时缩小到50千瓦时,司机也不会有里程焦虑。 来源:Nature 这项技术突破以“Fast charging of energy-dense lithium-ion batteries”为题发表在国际顶级期刊《Nature》上。 这种突破性的技术,更是得到了美国能源部、美国国防部、美国空军和威廉·迪芬德弗基金会的青睐。 01 在锂电池中加镍箔 目前提升电池快充能力的主流手段是电池材料改性,如提升电解液电导率、增加石墨材料比表面积等,这些都是在牺牲电池在正常工作条件下的寿命和安全性为代价,但这些手段大多都效果不佳。 而这项最新技术的核心,主要在于对电池内部的热量进行调节。 电池在运行时需要热起来但却不能太热,一直以来,电池的温度基本都是依赖外部附加的庞大的加热和冷却系统来控制,这种系统反应非常缓慢,还会浪费大量能源。 为此研究人员开发了一种新的电池结构,除了阳极、电解质和阴极外,还添加了超薄的镍箔作为第四种成分。 作为一种刺激物质,而镍箔可以自我调节电池的温度和反应性,这使得任何电动汽车电池都可以快速充电10分钟。 其实早在6年前,王朝阳及其同事就开始在锂离子电池中添加镍箔来加热,帮助电池在严寒环境中有更好的续航。 不过有个问题是,当前所有车用锂电池在高功率充电下都无法避免析锂现象的发生,这也极大缩短了电池寿命并可能造成安全隐患。 王朝阳及其团队为了应对这个问题,采用两种盐性(0.6 M LiFSI +0.6 M LiPF6)的电解液替换了传统的电解液体系(1M LiPF6)。 相比于单一的LiPF6溶液,LiFSI溶液有更高的锂离子迁移数(0.56 vs. 0.38),在同样的倍率下,LiFSI还可以降低电解液浓差极化,提高电极厚度方向嵌锂反应的均匀性,这样不仅提高了电解液的热稳定性,又极大降低了析锂风险。 来源:Nature 结合此前王朝阳团队先前研发的速热以及非对称温度热调控(Asymmetric Temperature Modulation, ATM)的方法(即充电前加热至高温(~60oC)快速充电,室温放电)。 可以实现了高能量密度锂离子电池(265 Wh/kg)的快速充电(10分钟充电~75% ),并能够稳定循环高达2000次以上,也创造了动力电池极速充电的世界记录。 而且这些创新首次揭示了高比能动力电池极速充电只需要空气冷却,大大提高了电池系统的集成度、可靠性和安全性。 研究人员表示,这项工作与目前声称充电 10 分钟后可以行驶100或150英里的电车完全不同。 通常情况下,这些电车的续航可以达到500英里,甚至更多,所以充电10分钟行驶100英里,只能算是冲到25%,这种全新的技术,直接将目前的充电水平提高三倍。 02 王朝阳是谁? 王朝阳,华人科学家,公开资料显示,1984年获浙大热物理工程学系(现能源系)内燃动力工程专业学士学位,1987年获浙大热物理工程学系(现能源系)工程热物理专业硕士学位。 如今,王朝阳是美国国家发明家科学院院士,宾夕法尼亚州立大学William E. Diefenderfer 讲席教授,并且还兼任电池与储能技术研究院院长,美国机械工程师学会(ASME)会士,电化学学会(ECS)电池分会执行委员等一大堆名誉头衔。 […] read more

可在高温、极寒环境下正常工作的新型锂电池即将问世
加州大学圣地亚哥分校 (UCSD)的工程团队近日研发了一种新型锂离子电池,不仅在严寒和酷热的温度下表现良好,同时仍能储存大量能量。研究人员表示之所以具备如此好的特性,主要归功于全新开发的电解质。这种电解质不仅能在很宽的温度范围内用途广泛且坚固耐用,而且兼容高能阳极和阴极。 这项成果于 7 月 4 日发表在《美国国家科学院院刊》(PNAS) 上,基于这项技术开发的车用电池即使在寒冷气候下也能让电动汽车行驶更远。加州大学圣地亚哥分校雅各布斯工程学院纳米工程学教授、该研究的资深作者郑晨(Zheng Chen,音译)说,它们还可以减少对冷却系统的需求,以防止车辆的电池组在炎热气候下过热。 Chen 解释说:“如果你需要在三位数(华氏)的高温条件下开车,那么对于汽车电池来说是一个重大挑战。在电动汽车中,电池组通常位于底盘,更靠近这些炎热的道路。此外,电池在运行过程中会因电流通过而升温。如果电池不能承受这种高温预热,它们的性能将迅速下降”。 在测试中,概念验证电池在 -40°C 和 50°C(-40 和 122°F)下分别保留了 87.5% 和 115.9% 的能量容量。在这些温度下,它们还分别具有 98.2% 和 98.7% 的高库仑效率,这意味着电池在停止工作之前可以进行更多的充电和放电循环。 由于其独特的电解质,Chen 和同事开发的电池既耐寒又耐热。它由二丁醚与锂盐混合而成的液体溶液制成。二丁基醚的一个特点是其分子与锂离子的结合较弱。换句话说,当电池运行时,电解质分子很容易释放锂离子。研究人员在之前的一项研究中发现,这种微弱的分子相互作用可以提高电池在零下温度下的性能。另外,二丁醚很容易吸收热量,因为它在高温下保持液态(沸点为 141 °C 或 286 °F)。 这种电解质的另一个特别之处在于它与锂硫电池兼容,锂硫电池是一种可充电电池,其阳极由锂金属制成,阴极由硫制成。锂硫电池是下一代电池技术的重要组成部分,因为它们承诺更高的能量密度和更低的成本。它们每公斤存储的能量是当今锂离子电池的两倍——这可以使电动汽车的续航里程增加一倍,而不会增加电池组的重量。此外,与传统锂离子电池阴极中使用的钴相比,硫的来源更丰富且问题更少。 但锂硫电池也存在问题。阴极和阳极都具有超强反应性。硫正极非常活泼,以至于它们在电池运行期间会溶解。这个问题在高温下会变得更糟。锂金属阳极容易形成称为枝晶的针状结构,可以刺穿电池的某些部分,导致电池短路。结果,锂硫电池只能持续数十次循环。 Chen 说:“如果你想要一个能量密度高的电池,你通常需要使用非常苛刻、复杂的化学物质。高能量意味着更多的反应正在发生,这意味着稳定性更低,降解更多。制造稳定的高能电池本身就是一项艰巨的任务——试图在很宽的温度范围内做到这一点更具挑战性”。 编译:cnBeta.com read more

成本不到锂电池的一半儿!不含锂钴的新型电池可用于EV和储能
据报道,美国电动汽车电池初创公司Alsym Energy推出了一种电池存储解决方案,该解决方案不仅可以以较低的成本提供锂离子电池性能,而且没有后者有时会起火的风险。 据悉,该公司研发的这种新型电池的阴极主要是锰氧化物,阳极是另一种金属氧化物,电解液是水基的,但其尚未披露电池的确切化学成分。但值得注意的是,Alsym Energy表示,这种电池不使用锂、钴或镍,以避免与材料供应和成本有关的问题。 该公司表示,它预计这种电池的成本将低于目前锂电池的一半。另外一个好处是,由于使用了无毒材料,这种电池更容易回收。 Alsym商业顾问委员会主席Nitin Nohria表示,该公司的目标之一是帮助世界上更多的人负担得起电动汽车。他说,“我们看到了将新电池推向市场的全球竞争。大多数公司主要关注性能,很少考虑让电池更安全、更划算,尤其是对消费者对价格更敏感的发展中国家来说。” “Alsym Energy的团队正在努力确保他们的电池不仅能以更低的成本满足性能预期,还能避免与锂基技术相关的大多数供应链挑战。”他补充说。 Alsym首席执行官兼联合创始人Mukesh Chatter则表示,该公司已与一家印度顶级汽车制造商达成合作,共同开发新电池,但Chatter拒绝透露这家汽车制造商的名称。 据悉,该公司的科学家和产品开发团队位于马萨诸塞州,目前正在开发一个500千瓦时的原型制造设施。Alsym表示,它的电池可以在现有的锂离子电池工厂生产,几乎不需要改装,也不需要昂贵的干燥室、防火锁和溶剂回收系统。 除了EV电池外,Alsym的电池还可用于固定式储能和海洋应用,但使用的是锰和铝等相对常见的材料。最终该公司希望与制造合作伙伴一起制造电池,并于2025年达成目标。 编译:财联社 @黄君芝 read more
日本新技术可以让电动汽车在1分钟内充完电?
2022年6月17日讯,日本电子零部件开发企业Eamex开发出高容量的电容器,如果用于纯电动汽车(EV),最快1分钟即可完成充电。Eamex将于8月供应样品,近期开始量产。 报道称,这款电容器把制动器产生的热量转变成电能再利用的性能也很强,如果跟锂离子电池配置在同一场所,有可能实现同等以上的EV续航距离。 此次开发的电容器将锂离子电池的正极更换成名为“聚苯胺”的特殊导电性高分子进行使用,可以高效吸附锂离子。试制品1-3分钟即可完成充电,可反复充放电3万次以上。 出处:日经中文网 read more

续航焦虑或成历史?国产电池技术又有3大突破
近年来,我国新能源汽车和国产智能手机的发展取得了许多令世人瞩目的成就,可谓是进入了高质量发展的快车道。 新能源汽车方面,截止2021年,我国新能源汽车销量连续7年位居全球第一。据中国汽车工业协会数据显示,我国新能源汽车保有量约580万辆,约占全球新能源汽车总量的50%。已经将合资车和外资车远远甩在了身后,实现了弯道超车。 国产智能手机方面,经过了十年的不懈努力,国产智能手机品牌全面崛起。无论是从质量、性能、价格等方面都有了质的飞跃,可以与苹果、三星等外国品牌一较高下。据CANALYS数据显示,2022年第一季度国内手机市场销量排名前五的手机品牌中,国产手机已经占据四席,国产手机品牌市场占有率达80%,而且荣耀、OPPO已经反超苹果手机,占据了销量榜的冠亚军位置。 这些成绩的取得,靠的不是一时的心血来潮,也不是跟风凑热闹,而是扎扎实实的技术创新与进步的结果。近期,我国的电池技术又接连取得突破,或将从根源上解决长期被人们所诟病的新能源汽车和智能手机的续航焦虑问题。 什么是续航焦虑? 续航焦虑从本质上来说就是充电焦虑,无论是新能源汽车还是智能手机,都需要在使用一定时间后为其充电。但是,就目前的充电技术来说,还远远达不到人们的使用需求。 比如新能源电动汽车,一旦没电,就需要到处去找充电桩,即使找到充电桩,可能还需要排队充电,好不容易排到自己了,也需要再等上大几十分钟甚至几个小时才能把电充满。这样一番折腾下来,可能你已经焦躁不安,身心疲惫。 再比如智能手机,其实也和新能源电动汽车类似,给手机充一次电也需要等上几十分钟才能充满。如果你有手机依赖症,那这几十分钟可能会让你心情沮丧,度日如年。 那如何解决续航焦虑的问题呢?笔者认为有两种方法,一是寻找性能更优的充电新材料;二是突破快充技术的瓶颈。 功夫不负有心人。近期我国在电池技术领域又传来了三个好消息,终于实现新的突破,下面赶快来分享给大家。 01 宁德时代发布新一代钠离子电池 据悉,这款钠离子电池电芯单体能量密度可达160Wh/kg;常温下充电15分钟,电量可达80%以上;而在零下20°C低温的环境下,仍然有90%以上的放电保持率。 在正极材料方面,宁德时代采用了克容量较高的普鲁士白材料,对材料体相结构进行电荷重排,解决了普鲁士白在循环过程中容量快速衰减的核心难题;在负极材料方面,宁德时代开发了具有独特孔隙结构的硬碳材料,其具有克容量高、易脱嵌、优循环的特性。 与锂离子电池相比,钠离子电池具有四大优势: 1、储量丰富。 锂在地壳中的含量只有0.0065%,而钠约为2.36%,钠的储量是锂的360倍。 2、成本低廉。 ①磷酸铁锂正极约6~8万/吨;而钠离子化合物价格稳定且低廉,仅为约250元/吨。 ②钠离子电池不需要使用钴、镍等稀有贵金属,且钠离子不与铝形成合金,还可使用比铜箔更便宜的铝箔做集流体,材料成本会比锂离子电池降低8%左右。 3、能量密度媲美磷酸铁锂。 由于钠离子电池无过放电特性,允许钠离子电池放电到零伏。钠离子电池能量密度大于100Wh/kg,可与磷酸铁锂电池相媲美。 4、安全性高。 钠离子电池的电化学性能稳定,具有较高的安全性。通过针刺、挤压、过充、过放等测试,能做到不起火不爆炸。另外,在运输环节中,可以实现零伏运输,有效地降低了运输风险。 另外,因钠离子电池在制造工艺方面,可以实现与锂离子电池生产设备、工艺的兼容,生产线可进行快速切换,实现产能快速布局。目前,宁德时代已启动钠离子电池产业化布局,2023年将形成基本产业链。 02 国轩高科研发的半固态电池将实现装车 在国轩高科第十一届科技大会上,工研院副院长张宏立表示,360Wh/kg能量密度的三元半固态电池将在今年实现量产。搭载半固态电池的车型,电池容量可达160kWh,续航将突破1000km,零百加速仅3.9s。 那什么是半固态电池呢? 半固态电池是指一侧电极不含液体电解质,另一侧电极含有液态电解质的电池。或单体中固体电解质质量或体积占单体中电解质总质量或总体积之比的一半。 半固态电池相比与传统的液态锂离子电池有以下三大优势: 1、能量密度高。 液态锂离子电池的能量密度上限被公认为300Wh/kg,即便是300Wh/kg也只是理论值。事实上,国产的纯电动车,主流的磷酸铁锂电池单体能量密度一般在160Wh/kg左右,比亚迪第二代刀片电池单体能量密度为180Wh/kg,三元锂电池的单体能量密度在200Wh/kg左右。 磷酸铁锂电池 而固态电池的能量密度很容易做到300~400wh/kg以上,理论能量密度更高达700Wh/kg,是锂电池的2倍。 2、体积小。 传统锂电池中,仅隔膜和电解液就占据了近40%的体积和25%的质量。而如果换作半固态电解质,正负极之间的距离可以缩短到几到十几个微米,这样电池的厚度就能大幅度降低,显得轻薄小巧。 3、柔性化。 半固态电池使用脆性的陶瓷材料,即便厚度薄到毫米级以下后还是可以弯曲的,材料柔性好。另外,半固态电池的轻薄化也使得柔性程度提高,因此,使用适当的材料封装后,可以经受几百到几千次的弯曲而做到性能基本不衰减。 陶瓷材料 此次国轩高科的半固态电池单体能量密度可达到磷酸铁锂电池的2.25倍,是比亚迪刀片电池的2倍,比三元锂电池主流产品高出80%左右。这意味着,在同等电池包体积下,电池续航可以延长一倍左右。并且,电池系统的性能更强,加速更快。 刀片电池 03 国产手机品牌realme实现150W光速秒充,打破充电技术天花板 除了寻找性能更优的充电新材料外,我国的科研人员也从未放弃对快(闪)充技术的探索。这不,从国产手机品牌realme传来好消息,在近期发布的真我GT Neo3手机上,其搭载的闪充技术又有新突破,实现了150W光速秒充,可以让手机5分钟充电50%,15分钟即可完全充满。这一技术一举打破了充电技术的天花板,做到了世界第 一。 看到这里,可能有朋友会问,一会儿快充,一会儿闪充,那到底有什么区别呢? 说到手机快速充电技术,目前市场上主流的快充技术有两种:一种是以华为、小米为代表的手机厂商使用的快充技术,一种是以OPPO、vivo、realme为代表的手机厂商使用的闪充技术。 先说快充,是通过提升充电电压,适当降低充电电流来加快充电速度。优点是电流低,兼容性强,对手机充电器、数据线没有太高要求。缺点是高电压会产生高热量,导致手机发热,对电池寿命影响明显。 再说闪充,与快充相反,是通过降低充电电压,提高充电电流来加快充电速度。优点是热量集中在充电头上,手机发热较轻,安全性较高。而缺点是,因为电流较大,需要特制的充电器与数据线,成本较高。但这一点也不用担心,因为购机时,一般都会标配充电器和数据线,不需要像苹果手机那样再去另外花钱买充电器。 这里建议大家认清楚快充和闪充的区别,充电器尽量不要混用,否则有可能导致手机使用寿命缩短和一些不必要的安全隐患。 GT Neo3搭载了定制的南芯半导体泵快充芯片。采用了全新的4:2大功率充电架构、双电芯串联结构设计以及Battery Sense电芯电压检测技术,以更低损耗、更低电阻实现150W大功率闪充,同时采用温控技术,在充电时可以将温度控制在43℃以下。 […] read more

在8分钟内充满电!Natron的钠离子电池即将投产
据报道,美国Natron公司研发的钠离子电池具有极长的循环寿命、实用的功率密度、卓越的安全性和超高速充电等优质性能,而且无需使用任何锂。 通过与汽车电池制造商Clarios的合作,Natron公司的钠离子电池将于明年在美国密歇根州进行大规模生产。 一些专家表示,目前的电池技术正在走向锂短缺危机,已知的锂储量根本不足以满足电动汽车市场的预期需求水平,更不用说未来几年寻求转向电池动力的其他行业了。 钠离子电池项目在过去几年中经常出现,希望能在从电池市场中分一杯羹。值得注意的是,中国的宁德时代去年推出了一款针对电动汽车市场的钠离子电池,其比能量为160 Wh/kg,是目前大众市场锂离子电池组能量密度的一半以上。 Natron公司则选择了一个不同的目标,使用了一种基于普鲁士蓝的不同化学物质。普鲁士蓝是一种常见的颜料,最著名的是它提供了蓝图的蓝色,也广泛用于日本传统木版画,如北斋的《神奈川的巨浪》。 众所周知,电池设计往往是许多因素的折衷,包括热性能、重量或单位体积的能量和功率密度、安全性、充电时间和循环寿命。 Natron声称,它的设计提供了介于铅酸和锂离子之间的强大容量功率密度,超高速充电设施可以在8分钟内完成0-99%充电,循环使用寿命超过5万次,比竞争对手锂离子电池还高出5到25倍。据说它们的热稳定性非常好,因此运输、部署和处置都很安全,没有火灾风险。 不过就目前而言,无论是重量还是体积,能量密度都相对较低,因此Natron不会向电动车制造商推销这款产品。该公司瞄准的是工业电池的使用案例:数据中心备用电源、叉车和其他工业车辆、电信设备等。也可能有一些电动汽车的应用,例如,作为电动汽车充电站的缓冲电池,在电网供应和快速充电器之间存储能量,以尽可能快的速度为汽车电池充电。 据悉,Natron已经与Clarios International合作,从2023年开始在密歇根州的Clarios Meadowbrook工厂批量生产这些钠离子电池。目前这里是一个锂离子电池工厂,Natron表示,他们的钠离子技术可以使用相同的设备进行生产,因此,与自己从头开始建造工厂相比,合作可以让其更快、更便宜地将这些产品推向市场。 Natron表示,一旦投产,它将成为世界上最大的钠离子电池工厂。此外,所需材料的供应量充足,应该会导致价格非常稳定,这可能是相对于锂的一个关键优势,后者取决于未来几十年供应和地缘政治的情况。 编译:财联社 @黄君芝 read more

经过3000次充放电测试,科学家找到了锂电池衰减的另一个重要因素!
电动汽车的销量增长速度比预期的快很多,这引发了电动汽车电池研发的空前盛况,电池技术日新月异,可是无论电池技术多么的先进,电池的衰减都不可避免。 最近,科学家对锂离子电池充放电循环过程中导致的衰减又有了新的发现,一个既简单合理但又非常难以确定的衰减原因在科学家努力了很长时间以后终于被发现了,这进一步加深了对锂离子电池循环寿命的理解,为设计出更好的寿命更长的锂离子电池做出重要贡献。 影响锂离子电池循环寿命的因素很多:充电次数、放电深度、过充、过放、过冷、过热、电极材料、电解液等等。 其中充放电过程中,锂离子在电池正负极材料的嵌入与脱嵌都会对电极材料产生机械力,电极材料的膨胀与收缩次数的增多,导致电极材料出现裂纹,而这正是电池性能急速下降的一个重要的原因。 这也是学术界普遍的共识,机械力应变会影响电池的寿命。 在科技还不如现在那么发达的以前,想观察电池的充放电循环导致机械应变很困难,但是科学家还是有办法,那就是用手拆,这是一个艰巨的过程,对不同的充放次数分别进行拆解再观察,看到了电池随着充放次数的增加,电极材料逐渐出现裂纹。 随着科技的发展,检测手段的进步,显微镜的应用使得科学家能更清楚地观察到电极裂纹的产生大概是在进行了多少次充放电循环后开始发生的,但是依然还是使用手拆的方式将电池进行拆解再用显微镜观察。 通过手拆的方式来观察电池,会破坏电池的结构,因此,科学家仅仅只能确认电极的裂纹会影响电池的寿命,无法进一步知道这种裂纹对电池的其余部分产生其他什么样的影响。 电池充放次数的增多会加剧衰减的过程,科学家相信裂纹的产生肯定会引发一系列的连锁反应,只是苦于检测手段的落后,一直无法得知是什么反应。 随着扫描透射电镜高分辨率X射线技术的发展,对电池充放过程产生的机械应变的了解也越来越清晰,科学家迫切的需要观察到完整的电池进行充放电后,电池内部发生了什么变化,即进行电池原位观察。 可喜的是,现在的技术已经可以做到这点了。 加拿大萨斯喀彻温大学的研究人员另辟蹊径,使用同步加速器设施的生物成像和插入设备光束线(BMIT)设施对完整的电池充放过程进行CT扫描,观察到了裂纹产生后的连锁反应,这个反应很合理,但是一直都无法确认,第一次被这个科研团队发现了。 他们用三元锂电池来进行研究,三个三元锂电池的充放电循环次数不同,分别是3887次、3675次和1550次,同时用新的三元锂电池来做对照。 当对这些电池进行原位CT扫描后,他们发现随着电池的充放循环次数增多,电池中的微裂纹越来越严重,而电池中的电解液则被吸入到裂纹之间的空隙中,这导致了电池内部电解液的减少。 电解液的消耗会导致严重的问题,因为电池的电解液不足,电池可能会立即停止工作。 这解释了为什么之前观察到从裂纹开始产生的循环数开始,电池的衰减在急剧的发生。由于之前的研究是使用手拆的方式进行观察,电池拆解后结构被破坏,即使看到了裂纹中有电解液,也无法得知是不是由于拆解污染造成的。 可能有人会说,这不是很容易理解么?裂纹有空隙,进电解液很正常。不用说,科学家也知道。但是科学是讲究证据的,即使很合理,没有真正观察到就无法下结论。 这个发现为设计寿命更长的电池迈出了重要的一步。目前他们的研究结果发表了在学术期刊《Journal of the Electrochemical Society》上。 作者为中国科学院博士,美国藤校研究员,科学技术控,接触一线科技研发,乐于分享,欢迎关注科技酷探。 出处:见配图水印 read more

宁德时代官宣新电池,比4680更厉害!
2022年3月25至27日,召开中国电动汽车百人会论坛(2022),本届大会论坛,多家企业领导者以及电动车行业众多明星企业和代表分别发表了各自的言论,其中不泛关于行业、产品以及未来发展方向的众多演讲,而在本次论坛中,“宁王”作为电动车行业锂离子电池的龙头企业,官宣了一则消息,又迅速引发了行业的震颤。 宁德时代发布麒麟电池 在3月26日下午,宁德时代首席科学家吴凯先生在以“迎接新能源汽车市场化发展新阶段”为主题展开演讲中,正式官宣了通过不断技术迭代,推出了第三代CTP(Cell to PAC)技术,内部称其为麒麟电池;在针对麒麟电池的透露中,吴凯先生讲到, 目前电池行业,在能量密度方面,每家企业都做出不同的策略和办法,来帮助电池提升能量密度,从而提升续航里程,吴凯先生表示,麒麟电池系统重量、能量密度以及提及能量密度均继续领先行业最高水平,在相同的化学体系、同等电池包尺寸下,麒麟电池包的电量,相较于4680(特斯拉下一代圆柱电芯)系统提升13%。 先姑且不谈麒麟电池,我们重新回顾一下4680电池,此前笔者着重针对4680电芯做过介绍,4680电芯,相较于目前特斯拉采用的2170电池,无论是在长度和直径上,均有所提升,在体积上,很像我们常见的5号电池晋升为1号电池,由于单体电芯的增加,使得单体电池能量固然会有提升,而更大的电芯在排列组装中,更能节省空间占用,在整体电池包上,也能起到非常显著的电量提升,可以让特斯拉车型在续航上有所提升,关于4680电池系统,想要了解的小伙伴可以点击后文链接了解详情。(汽场文章链接) 麒麟电池的优点 根据目前消息所知,麒麟电池在811(正极材料配比)三元锂电池上,实现无热扩散技术,811电池命名方式和523电池一致,均为正极材料配比所得,三元锂电池中,正极材料采用镍钴锰三元,不同的元素在携带锂离子数量上亦有差别,而不同材料可以综合电池的平衡,所以会有不同配比导致不同版本电池,811电池是目前行业主流电池配比,能量密度也有非常不错的表现。 宁德时代在2020年9月份率先在旗下811电池产品上实现无热扩散技术量产以后,带动整个行业技术变化,目前这项技术已经成为行业主流,关于无热扩散技术,根据工业和信息化部于2020年5月份颁布的GB 18384-2020《电动汽车用动力蓄电池安全要求》规定,要求电池单体发生热失控后,电池系统5分钟内不起或不爆炸,为成员预留安全逃生时间。 关于此类要求,宁德时代也有相关发表,认为国家强制眼球为最低门槛级要求,企业应以不发生热扩散为设计标准,并且目前行业众多优势企业已经主动作为,实现电池系统不热扩散目标,并且在对热扩散要求日益提高。 三元锂电池,相较于磷酸铁锂电池在安全维度上,的确存在劣势,但根据目前众多企业在积极对三元锂电池安全问题进行深入探究,已经研发出多种可以抑制三元锂电池安全问题的技术,无论是广汽埃安的弹匣电池管理系统,还是各家企业的BMS电池管理系统以及热失控系统等多维度的安全保障,均是为了让三元锂电池在能够解决能量密度的基础上,将安全性能提升,目前三元锂电池的表现也是行业内有目共睹。 能量密度为何影响续航? 在安全问题解决以后,更重要的就是提升能量密度,来提升续航里程。 续航里程其实在汽车上有非常明确的公式计算:续航=电池电量/电耗,而电动车的常见电耗采用kwh/100km来计算,电动车表显看到的的数据20kwh/100km就是电耗;想要提升电动车续航里程,要么提升电池电量, 要么降低电动车电耗。 此前,广汽埃安LX就用提升电池容量来提升续航里程,但是一味的提升电池容量,会给车身重量带来非常大的压力,无脑的提升电池容量,虽然能够提升续航,但是由于车身重量的增加,所以提升续航的变化就显得有些力不从心。 而单纯的降低汽车电耗,难度更大,毕竟千人千面,每个人的驾驶习惯都不同,带来的驾驶电耗也不同,所以,想要提升电动车续航,行业内将能量密度视为最核心的因素。 能量密度有两个维度计算,分别是:kw/kg和kw/L,考虑到续航和车身重量,我们常见的能量密度单位为kw/kg,前文说过,提升电池电量,固然会提升电动车续航,而如果在提升电池电量还能保证整车重量不受影响,那就一定会提升整车续航,这也是能量密度的关键作用,而麒麟电池,从目前的信息来看,无论是在电芯方面还是在电池PACK方案上,应该都有全新的优化方案,来超越之前一直备受行业追捧的4680电池,目前麒麟电池根据信息预计今年4月发布,届时笔者在为大家带来详细的分析。 写在最后 目前,行业内众多锂离子电池企业都在对安全、能量密度等多维度技术在积极研发,尤其是众多消费者源于电动车补能焦虑问题,很多企业也在持续对能量密度做优化;无论是4680电池还是宁德时代全新的麒麟电池,都是为了在不增加电池体积和重量的基础上,尽可能的提升电池电量,来满足消费者对续航的需求。 根据乘联会统计,2021年新能源汽车销量同比增长169.1%,而且在未来也会逐步呈攀升式的增长,电动车行业也需要时刻推进,电池行业的发展更是电动车行业的根基,决定着电动车的基础,所以,无论是4680电池,还是宁德时代的麒麟电池,都值得消费者期待,笔者也希望可以更早的看到量产产品,究竟能带来怎样的提升。 出处:头条号 @智能小电鳗 read more

阿维塔11开始宣传了
去年11月15日阿维塔11亮相,时隔只有4个月,这台车就出现在了工信部产品公告上了,这个速度实在是让人觉得有点传神,不过同时也证实了,强强联手果然高效。 而欢呼声更大的还是网友,仅三张实拍带来的回应就是:有它何必Model Y。 虽然客观来说,Model Y确实是韭菜高手,那么阿维塔11又是什么地方引发了大家的兴趣? 这里先抛开阿维塔后背的三大资方,直接看产品。 细节决定身份 其实从这次公开的目录上能注意到几个细节: 首先是很少有汽车品牌将备案目录的车型拍摄得如此考究,优势是角度清晰,能有高级感,缺点是如果设计上有误差,会提前暴露无遗。 其次,从比例上看,量产的阿维塔11十分协调,宽体设计,略显低趴,特别是侧面线条有点阿斯顿马丁DBX的意思,此外超大轮毂、短前悬、车身的肌肉膨胀感,都预示着这台车不太简单,和去年发布会上看到的车一样,从形态上就会发现它起点不低。 都知道阿维塔最强的就是资源整合能力,外观由海外德国设计,并挖来宝马前设计师操刀,整体风格虽然保留着SUV的姿态,但极其有冲击力的轮廓,让它在SUV前面足以加上轿跑甚至超跑的形容词。 车长4.88米,轴距2975mm,算得上很实用黄金的尺寸,属于兼顾空间和灵活性的定位,比特斯拉Model Y的体量要大,和蔚来EC6比较接近,但不一样的是,这台车的性能却奔着保时捷Taycan而去。 还有更关键的是,Model Y为了刻意强调实用,然后在Model 3上去实现“整容”,相比阿维塔11这种原汁原味的野生美感,多少有点差距。 性能决定地位 数据显示,阿维塔11前后配置超大功率电机,前265匹、后313匹,叠加最高可达578匹,百公里加速轻松进入3秒俱乐部。 同时搭载宁德时代三元锂离子电池,容量90.38kWh,能量密度高达180Wh/kg,让续航能达到600公里,而此后还有超过700公里续航的后续车型。 并且与保时捷相似的具备超高压750V及240kW充电,从30%充到80%只有15分钟,换句话说就是充电15分钟就够跑300公里。 此外今年大家都在卷的激光雷达,阿维塔11一来就配3颗,同时还配置了6颗毫米波、12颗超声波以及全车13颗摄像头的硬件,在400Tops的算力平台下,构建了十分顶级的感知系统。 所以,一串数字下来,直接会让人将这台车放在与蔚来的ET7、理想L9以及小鹏G9这样的档次上,属于那种当下配置满分的存在。 当然,目前来看,只能看出它炫富的一面,真在能否带来预期的驾驶质感和更高级的快乐,只有等到产品真正落成才能判断。 资源整合才是关键 不过话说回来,这点本事对于阿维塔11来说,太过于轻松,三大资方:长安、宁德时代、华为,每一家都是独角兽,随便整合一点优质资源就足以轻松立标。并且高管团队无论是设计制造领域还是营销和网络布局,都已经具备完整的生态链。 蔚来当年出道让无数巨头站台的现象,我相信大家可能并不陌生,而这次阿维塔可以说做得更加极致,三家母公司均为车圈龙头,虽然尚不了解阿维塔11驾驶姿态如何,但完全可以断定,它绝对拥有娘胎里最好的营养。 比如CHN智能电动车技术平台、宁德时代新一代CTP电池包,全系搭载华为HI(Huawei Inside)全栈智能汽车解决方案,智能座舱平台CDC、自动驾驶域控制器ADC…… 相较于目前的高端格局来看,阿维塔11明显更突出其全局性,无论是智能还是性能、品味还是个性。但恰恰是这样,又会带来一些不确定性,例如高端市场也有像Model X这种虽然炫酷但水土不服的车型,但也有像高合HiPhi X这样能凭借炫酷受到好评的产品。 那么问题来了,这样一台车会卖多少钱? 如果仅从产品力的角度来看,放在传统德系豪华品牌上,至少是Taycan的水平,但国产高端不谈务虚,大家的认知是,有哪种实力就定哪种价格。 而阿维塔11无论背景如何强大,但毕竟是一个完全独立的新势力,所以应该直接抛开溢价层面,根据车闻社判断,阿维塔11预计售价在40多起或许是比较理想的预期。 当然,这只是一种推测,因为即使是高标准下,我们依然期待它带着一定的性价比,但可以预判的是,如果只拿来和特斯拉Model Y对标,那绝对是降维打击,估计它已具备碾压性的优势。 目前官方称第二季度上市,第三季度交付,这节奏对于阿维塔来说越来越快,没准好戏真的在后面。 出处:头条号 @车闻社 read more

美国Amprius公司的“世界最高密度”电池开始出货了
美国 Amprius 于2022年2月16日宣布,出货第一批商业化的 450Wh/kg(1150Wh / L)锂离子电池单元,它们将被用于新一代的高空伪卫星(HAPS),这是目前可用电池中能量密度最高的锂电池。 据该公司称,这些是目前“世界最高密度”的商业化电池单元,“在先进的航空航天应用中部署颠覆性的电池单元,肯定了 Amprius 是现有最高能量密度电池的领先供应商”。 实现这一结果的一个关键是 Amprius 的硅阳极(Si-Nanowire 平台),该公司曾在 2021 年 11 月 8 日宣布了 405Wh/kg的电池,仅几个月能量密度就达到了 450Wh/kg。去年 12 月,该公司称其 370Wh/kg的版本可以在大约 6 分钟内从 0 充电到 80%。 安普瑞斯科技公司的首席运营官 Jon Bornstein 说,“与之前在 2021 年 11 月 8 日宣布的 405Wh/kg产品相比,这一进步凸显了我们在提供具有无与伦比的性能的产品方面的路线图的加速。我们专有的 Si-NanowireTM 平台和我们开发的综合解决方案实现了无与伦比的性能,并继续保持我们的产品领先地位。” 目前,Amprius 在其位于加利福尼亚州弗里蒙特的工厂中以有限的规模生产电池单元。本季度晚些时候,该公司打算为其在美国的第一个大批量的生产设施选择地点。 该公司没有透露制造能力如何,也没有透露高能量密度的电池单元是否会进入电动汽车。 特斯拉的埃隆-马斯克曾在 2020 年称,400Wh/kg能量密度的电池单元只需 3-4 年就能实现,也就是 2023-2024 年,这将大大减轻电池的重量。 根据 Enpower 的数据,目前特斯拉的 […] read more