Tag: 固态电池
全固态电池,纯电续航1500公里… 奇瑞发力啦
对于传统消费者来说,纯电车始终存在着里程焦虑,因此只适合在城区驾驶,长距离行车还是燃油车更为实用。然而,如果说有一款… read more
奇瑞造了一辆“帕梅”:固态电池,纯电续航1500公里
固态电池上车的时间比我想象的还要更早一些,目前来看,已经明确表示要搭载固态电池的车型是奇瑞猎风,这款车最早亮相… read more
美国的无负极钠固态电池,或将带来电池领域新突破!
美国芝加哥大学的孟颖教授近日带领研究团队开发了一款全球首个无负极钠固态电池。这一成果已发表于《自然-能源》杂志,标志… read more
不诚实不正直?享界S9在汽车之家冬季测试,排名倒数第二
随着冬季的到来,电动汽车的低温续航问题,再次成为了焦点。每当这个时候,各大媒体都会开始进行冬季低温续航测试,而测试的… read more
车企一窝蜂量产“固态电池”?
对于固态电池技术,行业内出现了一个奇怪的情况。近日,行业多家车企、动力电池企业,纷纷公布了各自固态电池研发的最新进展… read more
日系下注了,该不该等固态电池?
本田召开新闻发布会,释放出了自己的王炸——首次公开自研的全固态电池示范生产线。该试验生产线于2024年春季开始建设… read more
奇瑞猎装来了,搭载固态电池,续航1500km,加速3秒!
概念车的神秘面纱:猎风初印象在2024广州车展这个汽车界的大聚会上,奇瑞就跟个神秘的变戏法儿的似的,带着好多新车型闪… read more
固态钠电池研发获新突破
固态钠离子电池技术研发又有新进展。 2023年12月19日,美国的马里兰大学宣布,该校能源创新研究所教授Eric Wachsman领导的团队开发出一种性能优于当前钠离子电池的新型固态钠离子电池架构。 它使用了更稳定的陶瓷固态电解质,相较于液体电解质,这种电解质不易燃,安全性更强。其采用了钠金属作为负极,使得电池能够获得更高的能量密度。 钠离子电池与锂离子电池工作原理相似,主要依靠钠离子在正极和负极之间移动来工作。相较于锂离子电池,钠离子电池具有资源储备量丰富、成本低等优势,但在能量密度方面落后于锂离子电池。 钠离子电池与锂离子电池多采用液态电解质,容易出现漏液、燃烧等问题,而使用固态电解质取代易燃的有机液态电解液,可有效提高电池的安全性,这类电池也被称为固态电池。固态电解质的开发是此项技术的主要难点。 马里兰大学称,上述固态钠离子电池特殊的负极和电解质材料使得其负极界面的电阻有效降低至3.5 Ωcm2,有利于钠离子的快速传输。 该电池每平方厘米的表面上能够创纪录地通过40 mA的电流,满足高速充放电的需求。同时,它还能够在每平方厘米的表面上储存和释放10.8 AH的电荷,能够满足电池长时工作的需求。 为验证该新型固态钠离子电池架构的性能,马里兰大学的研究人员将软包电池外壳、磷酸钒钠正极与钠金属负极和陶瓷固态电解质组装在一起,在室温下实现了2C速率循环,这意味着电池能够在半小时内充满或放完电。 固态电池和钠离子电池都被视作下一代电池技术,两者的组合此前也已进入国内电池研发人员的视野。 2020年,中科院大连化学物理研究所公布了一款具有高能量密度、长寿命等特点的全固态钠离子电池,由二维材料与能源器件研究组研究员吴忠帅团队等人共同研制。 该款软包钠离子电池在平铺和弯折状态下循环535次后,仍可保持355 Wh/kg的能量密度。软包是电池的三种封装方式之一,其他封装方式还包括方形和圆柱。 今年9月,中国科学院物理研究所(北京凝聚态物理国家研究中心)胡勇胜团队发现了一类新型粘弹性无机玻璃固体电解质,克服了有机聚合物固态电池界面化学稳定性较差、无法与高电压正极兼容等问题,使得固态钠离子电池能够耐受高压,并保持良好的循环率。 10月,中国科学院青岛能源所发文称,崔光磊研究员带领的固态能源系统技术中心成功研制出了固态钠离子电池,其电芯能量密度超140 Wh/kg,已实现在二轮电动车的示范应用。该团队未来还将重点针对低速电动车、新能源汽车48 V电源系统、家庭储能等领域继续开展研发工作。 国内的固态钠离子电池研发成果大多公布了能量密度等关键参数,但界面新闻未能查询到马里兰大学所发布成果的同类数据,因此无法直接对比产品的性能高低。 截至目前,固态钠离子电池在产业化层面并未大范围铺开。仅有广州昊威新能源科技有限公司(下称昊威新能源)公布了这项技术的量产投资计划。 今年9月,该公司宣布将在重庆投资100亿元,建设固态方形钠离子电池生产线项目,年产能30 GWh。昊威新能源注册成立于2021年,何怀福持有该公司全部股权。 比克电池则在今年7月透露,正在探索钠离子电池性能改善的新路径,即“半固态+钠电”的组合,目前已开启中试样品阶段。半固态电池是液态电池和全固态电池的折中方案,其电解质形态介于液态和固态之间。 宁德时代(300750.SZ)、比亚迪(002594.SZ)等电池龙头并未公布在固态钠离子电池技术路线方面的研发成果。 宁德时代于2021年7月发布了第一代钠离子电池,该产品其采用了液态电解质,能量密度为160 Wh/kg,接近磷酸铁锂电池。后者是目前主流的锂电池技术。 高工产研GGII曾分析称,“现阶段,(半)固态钠离子电池仍处于开发初期,随着专利技术储备增加与突破,(半)固态钠离子电池有望在2026-2027年实现规模量产。” 编译:界面新闻 @高菁 read more
欧洲动力电池厂商Northvolt跟中国电池厂商抢客户失败
Northvolt会被中国电池制造商“生吞活剥”了? 今年初,当宝马对外招标160GWh电池订单时,肯定考虑过一家欧洲本土的明星电池企业。 这家企业正是电池独角兽Northvolt。 两名特斯拉前高管2016年创办了Northvolt,随后在大约7年时间内完成8轮融资,并从包括高盛、大众汽车、ABB在内的投资者处筹集了82.6亿美元。 这家估值超过200亿美元的公司已经成为事实上的“欧洲动力电池国家队”——8月中旬生效的欧盟《新电池法》强化了这一角色。 甚至早在两年前,宝马就和Northvolt签订了价值20亿欧元(约21亿美元,当前汇率)的动力电池长期供货合同。 据称这能减少欧洲车企对亚洲电池供应商的“依赖”。 但近日的消息却显示,这一次宝马抛出的价值960亿人民币(按每瓦时0.6元价格计算,约合131亿美元)的电池大单,却跟Northvolt无缘。 据称来自中国的蜂巢能源、宁德时代分食了这块肥肉。 产能可能是Northvolt错失宝马订单的一个潜在因素。 直到2022年5月,Northvolt才向一个未披露名字的汽车制造商提供了电池产品,成为第一个实现商业交付的欧洲电池公司。 这次交付的规模同样没有披露。 该公司的计划是到2030年,在欧洲动力电池市场占据约25%份额(150GWh)。 迄今为止,Northvolt没有公开过电池装机数据。 包括SNE Research在内的行业机构,发布的电池装机榜单中也从未出现Northvolt的名字。 跟宁德时代、比亚迪等浸淫电池超过20年的巨头级玩家相比,Northvolt想要打出的本土化和“绿色电池”优势,还没有兑现成市场竞争力。 绿色电池成为救星? 基于现实,宝马也很难在一桩迫在眉睫的交易中选择Northvolt。 今年上半年,宝马纯电动车销量达4.49万台,同比增长283%。 宝马自己也预见了电动车销量爆发的趋势,并于今年初把电芯采购量从原计划的120亿欧元(约合127亿美元),增加至超过200亿欧元(约211亿美元)。 宝马的采购量达到了160GWh,这已经超出了Northvolt到2030年150GWh的规划产能。 技术是另一个大问题——甚至Northvolt刚成立时就被一位车企高管质疑,称其会被中国电池制造商“生吞活剥”。 但还是有车企给了Northvolt机会。 2018年初,Northvolt才在来自日本的“外部合作伙伴”帮助下,制造出了第一个“测试电池”。 当时这家公司的全部员工只有100多人。 同期的宁德时代,研发技术人员为4217人,其中光是博士就有112人(2018年报数据)。 发展到现在,Northvolt有5500多名员工,不过宁德时代的研发技术人员也已经膨胀到了 17998 人,博士和硕士加起来也有3255人(2023半年报数据)。 比亚迪和宁德时代甚至还布局了锂矿。 因为开采一个新矿山需要5-25年,没有多少欧洲企业愿意投资这种项目。 但在Northvolt创始人的彼得·卡尔森(Peter Carlsson)看来,这都不是问题。 彼得·卡尔森(Peter Carlsson) 他认为(当前)动力电池生产会造成大量碳排放。 所以他的公司解决了这个难题——通过水电等可再生能源生产电池,同时推进电池回收业务,Northvolt得以生产出世界上最环保、(生产过程中)二氧化碳排放量最少的锂电池。 Northvolt在瑞典和北美的生产基地,都设在水电资源丰富的地区。 在大众汽车集团2021年的Power Day(电力日)上,彼得·卡尔森表示Northvolt的一家工厂甚至会把融化的雪水收集来,为工厂发电。 彼得·卡尔森相信,在欧盟《新电池法》对电池碳足迹严格要求的情况下,他生产的“绿色电池”更有优势。 这地确让一些车企印象深刻。 但一位汽车制造商客户表示,“对车企来说真正关心的是:我什么时候能拿到电池?” 彼得·卡尔森也承认,客户对电池短缺的不耐烦情绪已经加剧,因此2023年对欧洲最大的工业初创企业来说是决定性的一年,“今年将是对我们的重大考验”。 规模难抵竞争对手 “我们的电价只有中国工业用电的五分之一。”彼得·卡尔森说。 他想向车企和投资者传达的信息是,Northvolt能把绿色和成本统一起来——车企当然欢迎环保,同时也对成本更敏感。 目前动力电池在电动车的成本中占到40%左右,车企并不希望这一比例继续上升。 但在Northvolt的产品只是小批量出货、难以实现规模效应的情况下,其在电价方面的单一成本优势难以体现到最终的电池产品中。 根据Northvolt官网提供的信息,目前其在瑞典有4家工厂(3家电池工厂和1家材料工厂),不过其中只有“Northvolt labs”和“Northvolt Ett”小批量投产。 位于波兰的工厂出货了储能系统,德国工厂2025年投产。 今年9月份,Northvolt又在加拿大安大略省规划了一个超级工厂,设计年产能60GWh。 […] read more
伊隆·马斯克认为锰基电池有潜力
任何电池路线的发展都离不开能量密度和成本这两条主线。磷酸锰铁锂的能量密度高于磷酸铁锂但成本却差不多,富锂锰基材料和层状锰酸锂的能量密度优于三元材料。在原材料成本不断高企的当下,研发这几种正极材料的热度自然会提升。 近日,当升科技宣布磷酸锰铁锂材料已完成研发,目前处于客户认证阶段;巴斯夫杉杉宣布富锰电池材料已实现吨级规模化生产……近年来,包括磷酸锰铁锂、富锂锰基等锰基电池备受关注,相关企业加速布局。锰基材料电池前景究竟如何? 性价比优势显著 磷酸铁锂电池和三元锂电池是目前电动汽车使用的主流动力电池。 今年3月,特斯拉CEO马斯克表示,“我认为锰基电池有潜力。”他进一步称“在非常大的(电池)需求下,我们需要数千万吨甚至数亿吨原材料。因此,用于大规模生产电池的材料必须是普通材料,否则就无法规模化。”在2020年的特斯拉电池日上,马斯克还曾表示,用2/3的镍和1/3的锰做正极材料相对简单,这使得在同样数量镍的情况下可以提升50%以上的电池容量。 目前主流锰基电池包括锰酸锂、磷酸锰铁锂、富锂锰基等。业内人士认为,锰基材料中,磷酸锰铁锂作为磷酸铁锂最重要的改进方向之一,有望率先产业化应用。据了解,磷酸锰铁锂是磷酸铁锂与磷酸锰锂的固溶体,保留了磷酸铁锂的优良安全性与稳定性,并且拥有较高的电压平台以及与磷酸铁锂相同的理论克容量,因此相同条件下其理论能量密度比磷酸铁锂电池高20%左右。目前,拥有磷酸锰铁锂技术储备的电池厂商有宁德时代、比亚迪、国轩高科等,主要以专利技术研发、投资布局为主。德方纳米、中贝新材料、天津斯特兰等正极厂商均对锰铁锂产品有所布局。德方纳米表示,公司新型磷酸锰铁锂已开始送样,预计1-2年后可实现产业化,叠加正极补锂技术,该电池能量密度可提高20%,循环寿命可达1万次。 中国科学院宁波材料技术与工程研究所研究员夏永高指出,目前磷酸铁锂电池的能量密度已接近极限,三元锂电池受近期镍、钴价格波动影响,成本飞涨。同时,相对于镍、钴,锰的储量较为充足。在此背景下,锰基电池的优势进一步凸显。 在真锂研究首席分析师墨柯看来,任何电池路线的发展都离不开能量密度和成本这两条主线。“磷酸锰铁锂的能量密度高于磷酸铁锂但成本却差不多,富锂锰基材料和层状锰酸锂的能量密度也优于三元材料。在原材料成本不断高企的当下,研发这几种正极材料的热度自然会提升。” 尚存技术难点 据了解,比亚迪多年前曾尝试研究锰基电池并申请了相关专利,不过后续未有更多进展,目前比亚迪主打刀片电池。 事实上,具备诸多优势的锰基电池自身也有痛点。“锰元素的加入可以提升原本磷酸铁锂电池的能量密度,但与此同时,锰加入后,材料的锂离子扩散速度和电子电导率均会降低。因此,为了实现磷酸锰铁锂更高的放电比容量,需要减小材料一次颗粒尺寸,但小的纳米颗粒也带来一系列副作用,如压实降低、吸水性高,以及其导致的高温循环性能差和胀气问题。”夏永高表示。 “磷酸锰铁锂技术开发的难点在于解决电压双平台的问题,富锂锰基和层状锰酸锂技术开发的难点在于延长循环寿命的问题,目前,上述技术都还没达到实用阶段的水平。”墨柯坦言。 高工锂电认为,未来2-3年磷酸锰铁锂将更多的以复配三元材料方式加以应用。长远来看,随着其成本下降,循环性能改善,将加速完成从辅材到主材的升级过程。“磷酸锰铁锂现阶段单独使用还存在一些问题,其更适合用作三元锂电池的辅助材料,既可以兼顾能量密度,又可以提高三元电池的安全性能。”夏永高表示。 带动用锰需求 原材料供应紧张导致此前电池价格暴涨,近期价格仍维持在高位。目前,不少车企纷纷寻找性价比更高的电池,新材料、新技术层出不穷。清华大学教授、中国科学院院士欧阳明高近日表示,未来动力电池很有可能出现更多材料体系方面的创新。从目前来看,钠离子低温充电、快充性能表现十分突出,锰酸锂、锰酸铁锂等锰基固态电池经济性、低温性能表现优异,两者凭借各自优势,均已进入新一代动力电池技术研发布局之列。 中金公司的研报指出,2022年开始,4680电池、CTB、磷酸锰铁锂电池、半固态电池、钠电池、锂电回收等有望陆续走向产业化。“原材料价格上涨越多,综合性价比越高的电池路线就越受欢迎,比如,磷酸锰铁锂等多种技术路线未来都会有参与竞争的机会。”新能源与智能网联汽车独立研究者曹广平表示。 据了解,锰酸锂电池目前已实现大规模量产,在两轮车市场有着较大市场空间,磷酸锰铁锂电池、富锂锰基电池仍处于规模化量产的推进过程中。 业内比较关注,何种锰基电池可实现最先搭配装车。对此,夏永高看好三元/磷酸锰铁锂复合电池的前景。针对目前磷酸锰铁锂电池发展面临的技术问题,他认为针对不同的应用场景,综合平衡锰铁比、电化学性能和物理性能等至关重要,不应一味追求更高的锰含量。 未来随着锰基电池的发展,锰在电池端的需求也将攀升。中信证券的研报指出,受益于三元正极材料和锰酸锂材料出货量的快速增长,预计2025年锂电正极材料用锰量将超过30万吨,2021-2025年复合增长率为32%。随着新型锰基正极材料的渗透率提升,预计锂电池用锰量将出现激增,至2035年有望增至130万吨以上,相当于2021年的10余倍。2035年锂电池领域用锰量预计占锰整体需求比例达到5%。 read more
续航焦虑或成历史?国产电池技术又有3大突破
近年来,我国新能源汽车和国产智能手机的发展取得了许多令世人瞩目的成就,可谓是进入了高质量发展的快车道。 新能源汽车方面,截止2021年,我国新能源汽车销量连续7年位居全球第一。据中国汽车工业协会数据显示,我国新能源汽车保有量约580万辆,约占全球新能源汽车总量的50%。已经将合资车和外资车远远甩在了身后,实现了弯道超车。 国产智能手机方面,经过了十年的不懈努力,国产智能手机品牌全面崛起。无论是从质量、性能、价格等方面都有了质的飞跃,可以与苹果、三星等外国品牌一较高下。据CANALYS数据显示,2022年第一季度国内手机市场销量排名前五的手机品牌中,国产手机已经占据四席,国产手机品牌市场占有率达80%,而且荣耀、OPPO已经反超苹果手机,占据了销量榜的冠亚军位置。 这些成绩的取得,靠的不是一时的心血来潮,也不是跟风凑热闹,而是扎扎实实的技术创新与进步的结果。近期,我国的电池技术又接连取得突破,或将从根源上解决长期被人们所诟病的新能源汽车和智能手机的续航焦虑问题。 什么是续航焦虑? 续航焦虑从本质上来说就是充电焦虑,无论是新能源汽车还是智能手机,都需要在使用一定时间后为其充电。但是,就目前的充电技术来说,还远远达不到人们的使用需求。 比如新能源电动汽车,一旦没电,就需要到处去找充电桩,即使找到充电桩,可能还需要排队充电,好不容易排到自己了,也需要再等上大几十分钟甚至几个小时才能把电充满。这样一番折腾下来,可能你已经焦躁不安,身心疲惫。 再比如智能手机,其实也和新能源电动汽车类似,给手机充一次电也需要等上几十分钟才能充满。如果你有手机依赖症,那这几十分钟可能会让你心情沮丧,度日如年。 那如何解决续航焦虑的问题呢?笔者认为有两种方法,一是寻找性能更优的充电新材料;二是突破快充技术的瓶颈。 功夫不负有心人。近期我国在电池技术领域又传来了三个好消息,终于实现新的突破,下面赶快来分享给大家。 01 宁德时代发布新一代钠离子电池 据悉,这款钠离子电池电芯单体能量密度可达160Wh/kg;常温下充电15分钟,电量可达80%以上;而在零下20°C低温的环境下,仍然有90%以上的放电保持率。 在正极材料方面,宁德时代采用了克容量较高的普鲁士白材料,对材料体相结构进行电荷重排,解决了普鲁士白在循环过程中容量快速衰减的核心难题;在负极材料方面,宁德时代开发了具有独特孔隙结构的硬碳材料,其具有克容量高、易脱嵌、优循环的特性。 与锂离子电池相比,钠离子电池具有四大优势: 1、储量丰富。 锂在地壳中的含量只有0.0065%,而钠约为2.36%,钠的储量是锂的360倍。 2、成本低廉。 ①磷酸铁锂正极约6~8万/吨;而钠离子化合物价格稳定且低廉,仅为约250元/吨。 ②钠离子电池不需要使用钴、镍等稀有贵金属,且钠离子不与铝形成合金,还可使用比铜箔更便宜的铝箔做集流体,材料成本会比锂离子电池降低8%左右。 3、能量密度媲美磷酸铁锂。 由于钠离子电池无过放电特性,允许钠离子电池放电到零伏。钠离子电池能量密度大于100Wh/kg,可与磷酸铁锂电池相媲美。 4、安全性高。 钠离子电池的电化学性能稳定,具有较高的安全性。通过针刺、挤压、过充、过放等测试,能做到不起火不爆炸。另外,在运输环节中,可以实现零伏运输,有效地降低了运输风险。 另外,因钠离子电池在制造工艺方面,可以实现与锂离子电池生产设备、工艺的兼容,生产线可进行快速切换,实现产能快速布局。目前,宁德时代已启动钠离子电池产业化布局,2023年将形成基本产业链。 02 国轩高科研发的半固态电池将实现装车 在国轩高科第十一届科技大会上,工研院副院长张宏立表示,360Wh/kg能量密度的三元半固态电池将在今年实现量产。搭载半固态电池的车型,电池容量可达160kWh,续航将突破1000km,零百加速仅3.9s。 那什么是半固态电池呢? 半固态电池是指一侧电极不含液体电解质,另一侧电极含有液态电解质的电池。或单体中固体电解质质量或体积占单体中电解质总质量或总体积之比的一半。 半固态电池相比与传统的液态锂离子电池有以下三大优势: 1、能量密度高。 液态锂离子电池的能量密度上限被公认为300Wh/kg,即便是300Wh/kg也只是理论值。事实上,国产的纯电动车,主流的磷酸铁锂电池单体能量密度一般在160Wh/kg左右,比亚迪第二代刀片电池单体能量密度为180Wh/kg,三元锂电池的单体能量密度在200Wh/kg左右。 磷酸铁锂电池 而固态电池的能量密度很容易做到300~400wh/kg以上,理论能量密度更高达700Wh/kg,是锂电池的2倍。 2、体积小。 传统锂电池中,仅隔膜和电解液就占据了近40%的体积和25%的质量。而如果换作半固态电解质,正负极之间的距离可以缩短到几到十几个微米,这样电池的厚度就能大幅度降低,显得轻薄小巧。 3、柔性化。 半固态电池使用脆性的陶瓷材料,即便厚度薄到毫米级以下后还是可以弯曲的,材料柔性好。另外,半固态电池的轻薄化也使得柔性程度提高,因此,使用适当的材料封装后,可以经受几百到几千次的弯曲而做到性能基本不衰减。 陶瓷材料 此次国轩高科的半固态电池单体能量密度可达到磷酸铁锂电池的2.25倍,是比亚迪刀片电池的2倍,比三元锂电池主流产品高出80%左右。这意味着,在同等电池包体积下,电池续航可以延长一倍左右。并且,电池系统的性能更强,加速更快。 刀片电池 03 国产手机品牌realme实现150W光速秒充,打破充电技术天花板 除了寻找性能更优的充电新材料外,我国的科研人员也从未放弃对快(闪)充技术的探索。这不,从国产手机品牌realme传来好消息,在近期发布的真我GT Neo3手机上,其搭载的闪充技术又有新突破,实现了150W光速秒充,可以让手机5分钟充电50%,15分钟即可完全充满。这一技术一举打破了充电技术的天花板,做到了世界第 一。 看到这里,可能有朋友会问,一会儿快充,一会儿闪充,那到底有什么区别呢? 说到手机快速充电技术,目前市场上主流的快充技术有两种:一种是以华为、小米为代表的手机厂商使用的快充技术,一种是以OPPO、vivo、realme为代表的手机厂商使用的闪充技术。 先说快充,是通过提升充电电压,适当降低充电电流来加快充电速度。优点是电流低,兼容性强,对手机充电器、数据线没有太高要求。缺点是高电压会产生高热量,导致手机发热,对电池寿命影响明显。 再说闪充,与快充相反,是通过降低充电电压,提高充电电流来加快充电速度。优点是热量集中在充电头上,手机发热较轻,安全性较高。而缺点是,因为电流较大,需要特制的充电器与数据线,成本较高。但这一点也不用担心,因为购机时,一般都会标配充电器和数据线,不需要像苹果手机那样再去另外花钱买充电器。 这里建议大家认清楚快充和闪充的区别,充电器尽量不要混用,否则有可能导致手机使用寿命缩短和一些不必要的安全隐患。 GT Neo3搭载了定制的南芯半导体泵快充芯片。采用了全新的4:2大功率充电架构、双电芯串联结构设计以及Battery Sense电芯电压检测技术,以更低损耗、更低电阻实现150W大功率闪充,同时采用温控技术,在充电时可以将温度控制在43℃以下。 […] read more
新电机技术将电动汽车推向“下一层级”
《CarScoops》by Brad Anderson on February 3, 2022 YASA轴向磁通电机 当汽车工业迅速迭代、汽车厂家快速推出新的电动汽车的时候,并不只是电池包在进步,电机本身也在快速发展。 很多业界专家相信,在今后几年时间,电动汽车效率的提高不会仅仅是由新的电池包技术带来的,而同样会从电机和电力电子的技术进步得到提高。现在,有的汽车厂家如奔驰和雷诺相信电机的未来是轴向磁通电机,就像很多人相信动力电池的未来是固态电池一样。奔驰公司去年表示,电机不是一种大宗商品,而是一个快速发展的技术,其中创新和专长将推动性能和细分。奔驰已证实将使用AMG品牌内部开发的轴向磁通电机。 对电机开发的一个疑虑是电机需要用到稀土金属。现在80%的电机使用永磁体,其中用到钕、镨、镝和铽等稀土金属。开采这些金属会产生有害废弃物,而且稀土的开采、加工大部分都在中国。雷诺和宝马使用的同步电机不使用这些稀土金属,但是不是每家车企都像这两家一样,比如沃尔沃的XC40 Recharge上的永磁体电机就有稀土金属。沃尔沃表示,该公司选择这样的电机是因为在目前,这个技术具有优异的效率、扭矩和能量密度。大众公司称,它在减少稀土金属的用量,并在研发不用稀土金属的电机。 雷诺ZOE电机 电机的开发不仅仅是影响到汽车的效率,还影响到汽车工业的职位数量。一个电动汽车的电机往往比一个通常的内燃机少用50%的零部件和30%的人工,而为了留住工作岗位,很多车企都在内部生产电机,雷诺已经在生产自己的电机,而奔驰、Stellantis、沃尔沃也都在开始自己生产电机。 出处:见配图水印 read more