任何电池路线的发展都离不开能量密度和成本这两条主线。磷酸锰铁锂的能量密度高于磷酸铁锂但成本却差不多,富锂锰基材料和层状锰酸锂的能量密度优于三元材料。在原材料成本不断高企的当下,研发这几种正极材料的热度自然会提升。 近日,当升科技宣布磷酸锰铁锂材料已完成研发,目前处于客户认证阶段;巴斯夫杉杉宣布富锰电池材料已实现吨级规模化生产……近年来,包括磷酸锰铁锂、富锂锰基等锰基电池备受关注,相关企业加速布局。锰基材料电池前景究竟如何? 性价比优势显著 磷酸铁锂电池和三元锂电池是目前电动汽车使用的主流动力电池。 今年3月,特斯拉CEO马斯克表示,“我认为锰基电池有潜力。”他进一步称“在非常大的(电池)需求下,我们需要数千万吨甚至数亿吨原材料。因此,用于大规模生产电池的材料必须是普通材料,否则就无法规模化。”在2020年的特斯拉电池日上,马斯克还曾表示,用2/3的镍和1/3的锰做正极材料相对简单,这使得在同样数量镍的情况下可以提升50%以上的电池容量。 目前主流锰基电池包括锰酸锂、磷酸锰铁锂、富锂锰基等。业内人士认为,锰基材料中,磷酸锰铁锂作为磷酸铁锂最重要的改进方向之一,有望率先产业化应用。据了解,磷酸锰铁锂是磷酸铁锂与磷酸锰锂的固溶体,保留了磷酸铁锂的优良安全性与稳定性,并且拥有较高的电压平台以及与磷酸铁锂相同的理论克容量,因此相同条件下其理论能量密度比磷酸铁锂电池高20%左右。目前,拥有磷酸锰铁锂技术储备的电池厂商有宁德时代、比亚迪、国轩高科等,主要以专利技术研发、投资布局为主。德方纳米、中贝新材料、天津斯特兰等正极厂商均对锰铁锂产品有所布局。德方纳米表示,公司新型磷酸锰铁锂已开始送样,预计1-2年后可实现产业化,叠加正极补锂技术,该电池能量密度可提高20%,循环寿命可达1万次。 中国科学院宁波材料技术与工程研究所研究员夏永高指出,目前磷酸铁锂电池的能量密度已接近极限,三元锂电池受近期镍、钴价格波动影响,成本飞涨。同时,相对于镍、钴,锰的储量较为充足。在此背景下,锰基电池的优势进一步凸显。 在真锂研究首席分析师墨柯看来,任何电池路线的发展都离不开能量密度和成本这两条主线。“磷酸锰铁锂的能量密度高于磷酸铁锂但成本却差不多,富锂锰基材料和层状锰酸锂的能量密度也优于三元材料。在原材料成本不断高企的当下,研发这几种正极材料的热度自然会提升。” 尚存技术难点 据了解,比亚迪多年前曾尝试研究锰基电池并申请了相关专利,不过后续未有更多进展,目前比亚迪主打刀片电池。 事实上,具备诸多优势的锰基电池自身也有痛点。“锰元素的加入可以提升原本磷酸铁锂电池的能量密度,但与此同时,锰加入后,材料的锂离子扩散速度和电子电导率均会降低。因此,为了实现磷酸锰铁锂更高的放电比容量,需要减小材料一次颗粒尺寸,但小的纳米颗粒也带来一系列副作用,如压实降低、吸水性高,以及其导致的高温循环性能差和胀气问题。”夏永高表示。 “磷酸锰铁锂技术开发的难点在于解决电压双平台的问题,富锂锰基和层状锰酸锂技术开发的难点在于延长循环寿命的问题,目前,上述技术都还没达到实用阶段的水平。”墨柯坦言。 高工锂电认为,未来2-3年磷酸锰铁锂将更多的以复配三元材料方式加以应用。长远来看,随着其成本下降,循环性能改善,将加速完成从辅材到主材的升级过程。“磷酸锰铁锂现阶段单独使用还存在一些问题,其更适合用作三元锂电池的辅助材料,既可以兼顾能量密度,又可以提高三元电池的安全性能。”夏永高表示。 带动用锰需求 原材料供应紧张导致此前电池价格暴涨,近期价格仍维持在高位。目前,不少车企纷纷寻找性价比更高的电池,新材料、新技术层出不穷。清华大学教授、中国科学院院士欧阳明高近日表示,未来动力电池很有可能出现更多材料体系方面的创新。从目前来看,钠离子低温充电、快充性能表现十分突出,锰酸锂、锰酸铁锂等锰基固态电池经济性、低温性能表现优异,两者凭借各自优势,均已进入新一代动力电池技术研发布局之列。 中金公司的研报指出,2022年开始,4680电池、CTB、磷酸锰铁锂电池、半固态电池、钠电池、锂电回收等有望陆续走向产业化。“原材料价格上涨越多,综合性价比越高的电池路线就越受欢迎,比如,磷酸锰铁锂等多种技术路线未来都会有参与竞争的机会。”新能源与智能网联汽车独立研究者曹广平表示。 据了解,锰酸锂电池目前已实现大规模量产,在两轮车市场有着较大市场空间,磷酸锰铁锂电池、富锂锰基电池仍处于规模化量产的推进过程中。 业内比较关注,何种锰基电池可实现最先搭配装车。对此,夏永高看好三元/磷酸锰铁锂复合电池的前景。针对目前磷酸锰铁锂电池发展面临的技术问题,他认为针对不同的应用场景,综合平衡锰铁比、电化学性能和物理性能等至关重要,不应一味追求更高的锰含量。 未来随着锰基电池的发展,锰在电池端的需求也将攀升。中信证券的研报指出,受益于三元正极材料和锰酸锂材料出货量的快速增长,预计2025年锂电正极材料用锰量将超过30万吨,2021-2025年复合增长率为32%。随着新型锰基正极材料的渗透率提升,预计锂电池用锰量将出现激增,至2035年有望增至130万吨以上,相当于2021年的10余倍。2035年锂电池领域用锰量预计占锰整体需求比例达到5%。

Read More

如今各种锂电池已经成为日常生活里必不可少的设备,无论是手机、电脑、可穿戴设备还是新能源汽车,它的应用变得越来越广泛。但随之而来的是外界对锂电池资源的担忧,尤其是今年以来锂电池相关原材料价格出现飞涨,逼迫各国纷纷加快布局“后锂电池”时代。 锂电池资料图。图源:视觉中国 多国押注镁电池 《日本经济新闻》网站20日以《锂电池何时被超越?》为题报道称,英国剑桥大学、丹麦及以色列的知名工科大学以及德国、西班牙的研究机构组成的联合研究团队“E-Magic”在欧盟的资金支持下,正以2030年为目标,加快开发突破性的高容量、环保性更好的镁电池和锌电池。 报道称,锂电池最早在20世纪90年代开始由日本索尼公司实现商用化,它比之前的镍氢电池、铅酸电池能存储更多电能,如今已经在新能源汽车、个人电脑、智能手机等产品上得到普及,相关研究还在2019年获得诺贝尔化学奖。但锂电池的最大缺点就是成本高。报道举例称,如果将锂电池作为大规模储存太阳能或风能等可再生能源的储能电池,日本经济产业省的资料显示,想将其成本降到跟水力发电相当的每千瓦时2.3万日元的水平“是白日做梦”。 因此“后锂电池”时代的主要目标是压缩成本和提高耐用性。“E-Magic”瞄准了成本更低的镁电池。镁离子可以携带2个正电荷,而锂离子只能携带1个,因此理论上镁电池的能量密度可以比锂电池更大。目前实验室的镁电池已经能反复充放电超过500次。研究人员将致力于改进电解液及开发新的电极材料。同时丰田的北美研究所和美国休斯敦大学也在开发新型镁电池,它的电极正极材料采用有机化合物,电解质采用硼。虽然这种镁电池目前只能充放电200次,但研究团队称“已经找到了开发出高稳定性、高性能电池的方向”。 除了镁电池外,报道提到日本东北大学的小林弘明助教和本间格教授也在开发新型锌电池,他们用水溶液取代有机溶剂作为电解液,降低了火灾事故的风险,由于其成本低,未来有望用于储蓄可再生能源电力。 替代技术尚不成熟 真锂研究首席分析师墨柯21日接受《环球时报》记者采访时表示,就当前正在发展的锂电池替代技术而言,除了日本媒体提到的镁电池、锌电池,还有相对更成熟的钠电池。事实上,钠离子电池和锂离子电池均起源于上世纪70年代,它们的工作原理也高度相似。只是受制于没有合适的电极材料,钠电池一直到2000年之后才取得突破。当前技术最先进的钠电池是中国宁德时代今年7月发布的,具备全球最高的能量密度(160Wh/kg)和超快充特性(15分钟可充电80%)。预计宁德时代下一代钠电池能量密度可突破200Wh/kg;计划于2023年形成基本产业链。 墨柯认为,从目前的发展情况来看,无论是镁电池、锌电池还是钠电池,其成熟度距离大规模商业化应用还有相当差距,甚至只是处于实验室阶段,性能也有不少缺陷。他表示,外界对于这些锂电池替代技术如此热心,核心原因不在于它们的性能更好,而是资源更丰富、原材料价格更便宜。 正如《日本经济新闻》提到的,锂电池原材料——锂、镍、钴的产地分布极度不均。相关资料显示,近80%锂资源产量主要集中在美洲四湖以及澳洲六矿,中国需要的锂资源80%以上都要靠进口;镍资源多数集中在印尼、澳大利亚、巴西、俄罗斯、古巴和菲律宾等地区,这六国的镍储量占比全球储量近78%;全球已探明钴资源由约51%分布在刚果(金)。相比之下,钠、镁、锌的储量要高得多。例如锂在地壳中的储量为0.0065%,全球储量仅有8600万吨,而钠在地壳中的储量为2.74%,仅中国柴达木盆地的钠盐储量就达到3216亿吨。 但另一方面,镁电池和锌电池在技术和材料上仍有相当多障碍有待克服,目前还没有找到比较合适的电极材料,更谈不上大规模应用。墨柯预测,考虑到一项新技术从实验室研制到量产再到大规模应用的过程,这些替代技术可能需要等待二三十年才能发展成熟。他还表示,即便是相对成熟的钠电池,由于钠离子半径和体积相对较大,因此在能量密度提升上受到限制,可能更适合储能电池、二轮电动车等对能量密度要求不高的领域。宁德时代透露,已经开发出了钠电池和锂电池共用的体系,彼此可以“取长补短”。 锂电池还可以再“挖潜” 如果锂电池在短时间内还难以被取代,那么它的未来又如何呢?墨柯认为,今年以来锂电池相关原材料价格的飞涨存在人为炒作的成分,单就锂资源的储备量而言,虽然远不如钠镁锌,但在未来三五十年内是绝对够用的。 同时锂电池的潜力还远没有被挖掘干净。墨柯表示,锂电池理论能量密度最高可达到700Wh/kg,目前高镍811电池(即电池正极材料中镍占比80%、钴占比10%、锰占比10%)的能量密度能达到260-270Wh/kg,而日韩头部电池企业在2021年都推出镍含量在90%以上超高镍电池产品,再加上负极采用硅碳材料,有望将能量密度提高到400Wh/kg,相当于锂电池的储电能力提升了50%。此外,多国还在研究将锂电池的液态电解液替换为固体电解质,可以同时提高其能量密度和安全性。 撰文:环球时报 @马俊 @晨阳

Read More

电动车发展势头正佳,而关于三元锂和磷酸铁锂的路线之争也从未消停,刀片电池、弹匣电池等名头,无不向世人传递出一个信号:我才是动力电池的未来。但结果真的会如此吗?答案是未必。 最近,宁德时代董事长曾毓群对外透露,将于今年7月前后发布钠电池。 按照专家的说法,钠电池是一种“不依赖资源”的新型电池,不会像锂电池那样受上游原材料的供应以及价格变化影响,未来不存在发展瓶颈。 于是,吃瓜群众们不仅好奇:钠电池究竟是个啥?跟锂电池相比,钠电池的优点和不足又是什么?到底谁才是动力电池的未来? 钠电池是什么? 跟锂电池的命名方式一样,钠电池的全称叫做“钠离子电池”,其工作原理,就是通过钠离子在电极之间的移动来实现充放电过程。 两者工作原理略有不同的是,锂电池是通过锂离子在正负极之间移动、转换实现充放电,而钠电池是由钠离子在正负极之间的嵌入、脱出实现电荷转移。 ▲钠离子电池基本工作原理 简单来说,这不就是将锂离子换成了钠离子么?是的。而且,跟锂电池类似的是,钠电池在正负极材料的选用上也比较多元化,不同的电极材料能在电池能量密度方面带来不同的表现。 关于钠电池最早的研究,始于上世纪70年代的第一次石油危机期间,只是没有像锂电池那样进展迅速,此后相关研究越来越少,直到2010年之后,钠离子电池才与太阳能等可再生能源一起同步发展,以丰富储能体系。在这方面,欧美起步稍早,大概在2011年和2012年分别有公司涉足相关领域,美国能源部对此也有一定支持。 2012年,日本丰田曾发布一种钠离子电池正极材料,在当时就已经能将电动车续航里程提升到500-1000公里。 ▲各类高倍率性能钠离子电池正极材料的设计策略 在我国,包括中科院在内很多科研机构也在开展钠电池的研究,科技部2016年为此专门立项,今年4月,国家发改委和国家能源局发文,提出要支持储能多元化发展,以及加快钠离子电池开展规模化。 从产业化推进速度和专利布局来看,目前我国在钠电池领域处于领先地位。 钠电池各项性能如何? 既然大家都重视,那钠电池理应比锂电池更有优势才对。 可是,至少在目前看起来,跟如今应用最广泛的两种动力电池(磷酸铁锂、三元锂)相比,钠电池的主要性能指标其实并不具备明显优势,甚至在消费者十分看重的能量密度方面还处于劣势。 具体来看,如今三元锂量产装车已经做到180-200Wh/kg的水平,中短期目标是做到300Wh/kg;磷酸铁锂目前量产装车最高的为140Wh/kg,中短期目标是实现180-200Wh/kg;而国内钠离子电池目前能量密度最高为145Wh/kg,中短期目标是160-200Wh/kg,比三元锂差了不少,跟磷酸铁锂在相近水平(中科院物理所研发的钠电池,理论能量密度已经达到180 Wh/kg)。 虽然能量密度指标并不占优,但钠电池在充电速度方面却有不小的优势。众所周知,即便采用大功率直流快充,三元锂电池一般是半个小时能从20%充到80%,磷酸铁锂充电费时更久,而钠电池只要10分钟就能干到90%,也就相当于我们给车加个油的时间。

Read More

吉ICP备2020006555号

diandong123.cn

⌜ 免 责 声 明 ⌝
本站仅为纯分享中国人民在节能减排、人类实现碳中和地球环保等方面所作出的杰出贡献。
网页内容(如有图片或视频亦包括在内)由网友上传分享,站内短期缓存均为免费/无偿,无商业目的。
遇有侵害您合法权益之处欲申诉删改,可联络站务电邮处理(删/改)!